Types, occurrence mechanisms and prevention techniques of roof disasters in fully-mechanized top coal caving face
-
摘要:
综放工作面采出煤层厚度大,上覆岩层活动空间大,易发生顶板事故。为理解综放工作面顶板灾害发生机制,统计分析了部分煤矿综放工作面顶板灾害案例,按顶板条件及灾害特征将综放工作面顶板灾害分为松软顶板大面积切顶压架和坚硬顶板大面积垮落及压架2类。分别以崔木煤矿和曹家滩煤矿综放工作面为例,分析了2类顶板灾害发生特点,提出了相应顶板灾害发生机制:松软顶板工作面顶板胶结性弱,支架实际刚度不足致使顶板在煤壁处断裂,破断后易失稳,同时支架支护强度不足,最终导致切顶压架灾害;坚硬顶板工作面顶板整体性好,不易破断,悬顶到一定极限突然破断,对支架造成冲击,若断裂线在煤壁处则极易导致工作面切顶压架。结合工程实践,提出了2类顶板灾害防治技术措施:对于松软顶板综放工作面采取合理提高支架刚度、支护效率以及工作面推进速度,加强预警等手段预防大面积切顶压架灾害;对于坚硬顶板工作面除加强支架管理、合理开采设计等,还需从顶板改性入手,如采用井下区域水力压裂技术弱化顶板,防治顶板大面积垮落和压架灾害。
Abstract:The excavation thickness of the coal seam and the corresponding motion space of the overlying strata are so large in the fully-mechanized top coal caving face, that roof accidents are occur easily. In order to understand the mechanism of roof disasters in fully-mechanized caving working face, some cases of roof disasters in fully-mechanized caving working face are statistically analyzed. According to the roof conditions and disaster characteristics, the roof disasters in fully-mechanized caving working face are divided into two types: large-area roof cutting and support crushing for soft roof, large-area roof collapse with roof cutting and support crushing for hard roof. Taking Cuimu Mine and Caojiatan Mine as examples, the characteristics of two types of roof disasters are analyzed, and the corresponding roof disaster mechanism is presented: The roof in soft roof working face is of weak cementation. If the actual support stiffness is insufficient, the roof will break at the coal wall, and is easy to be unstable after breaking. As the same time, the insufficient support strength eventually leads to the leads to cutting and support crushing disaster of roof. The roof in hard roof working face is of good integrity and is not easy to break. When the suspended roof area is enough, the sudden breaking of roof will cause an impact on the support. If the breaking line is at the coal wall, it will easily leads to cutting and support crushing disaster of roof. Combined with engineering practice, prevention and control measures for two types of roof disaster are presented. For the soft roof working face, the measures such as reasonably improving the support stiffness, the supporting efficiency and the advancing speed of the working face, and the early warning and so on are used to prevent the occurrence of large-scale roof cutting and support crushing. For the hard roof working face, in addition to support management and rational mining design, it is necessary to improving roof conditions. For examples, the regional hydraulic fracturing technology is used to weaken the roof and prevent large-area roof collapse and support crushing disasters.
-
0. 引 言
煤作为重要的化石能源,在我国能源结构中占据主导地位,随着碳达峰碳中和愿景目标的提出,如何清洁利用煤炭是我们面临的严峻挑战。煤中元素运移特点、富集的物化特性和物源供给的不同,控制着不同成煤区、不同成煤期、不同地质背景下元素富集规律[1-2]。研究区义马组是河南省唯一具有工业价值的中生代煤系,前人开展了部分研究工作。义马盆地是晚太古代结晶基底和元古代—古生代—早中生代褶皱基底之上的中新生代断陷—拗陷盆地[3];认为义马组沉积环境具有冲积扇−湖滨三角洲−半深湖−滨浅湖−半深湖的演化特征[4-5];义马组各煤层分别发育在扇前冲积平原、湖滨三角洲和滨浅湖泊相[6-7];盆地产生于构造活动期,发展于稳定成煤期,结束于活动期,经历了氧化−还原−氧化的环境[8]。前人研究侧重于沉积环境及构造演化、成煤机制等,煤层元素地球化学特征及其所反映的沉积环境研究工作尚未见到公开报道。
1. 地质背景
义马煤田位于河南省西部,东西长25 km,南北宽2.5~11 km,面积约150 km2[5, 7]。构造上位于华北板块西南缘,东秦岭—大别山构造带北缘,是在华北地台基础之上发育起来的中新生代叠合盆地[9](图1a)。古生代古秦岭洋俯冲消减,华北古板块和扬子古板块碰撞形成以近东西向构造,中新生代特提斯洋俯冲、消减,印度板块与欧亚板块碰撞和太平洋板块俯冲对盆地复杂大地构造背景具有深远影响[3],中生代时期盆地物源区主要为南侧的秦岭−大别山造山带[10]。义马盆地整体处于渑池向斜的轴部,发育在被岸上断层、扣门山断层和硖石−义马断层控制的渑池义马断块之上(图1b)。
研究区主要发育三叠系、侏罗系、白垩系、古近系、新近系和第四系地层,中侏罗世义马组2-3号煤是主采煤层(图1c),煤厚0.24~14.08 m,平均7.73 m。
2. 样品采集与测试方法
选取义马盆地东北部北露天矿中侏罗世义马组2-3号煤层,从底至顶按20 cm的间隔采集31块煤样(编号为BLT1~BLT31)。煤样采取严格按照GB/T482—2008执行,样品采集后立刻放入密封袋中。主量元素测试方法依据《GB/T 14506.14—2010 硅酸盐岩石学化学分析方法 第14部分:氧化亚铁量测定》和《GB/T 14506.28—2010 硅酸盐岩石学化学分析方法第28部分:16个主次成分测定》,测试仪器采用荷兰生产的Axios mAX X射线荧光光谱仪。微量元素和稀土元素测试方法依据《GB/T 14506.30—2010 硅酸盐岩石化学分析方法 第30部分:44个元素量测定》,测试仪器采用美国Thermo Fisher公司生产的Element XR等离子体质谱仪。以上分析测试均在核工业地质分析测试研究中心完成。测试及计算结果见表1(微量元素)、表2(常量元素)、表3(稀土元素)。
表 1 义马盆地中侏罗世煤样微量元素分析结果Table 1. Content of trace elements in middle Jurassic coal from Yima Basin项目 含量/(μg·g−1) Li Be Sc V Cr Co Ni Cu Zn Ga Rb Sr Mo Cd In Sb Cs Ba W Re T1 Pb Bi Th U Nb Ta Zr Hf Sr/Cu Th/U V/(V+Ni) BLT-1 97.50 4.400 19.5 347 171 44.3 89.7 49.9 172 27.4 115 71.1 1.44 0.245 0.09 0.108 10.6 137 0.054 0.003 0.663 13.7 0.262 8.23 1.2 0.192 0.007 4.43 0.148 1.42 6.86 0.79 BLT-2 16.00 2.880 6.28 35.7 21.6 10 14.6 14.2 25.1 7.62 32.3 311 3.64 0.234 0.032 0.118 4.05 116 0.772 0.003 2.37 7.64 0.107 2.57 1.53 0.18 0.005 5.49 0.178 21.90 1.68 0.71 BLT-3 35.60 2.360 6.43 36 21.8 14.7 17 14.2 105 10.9 40.2 347 2.9 0.26 0.034 0.147 5.10 164 0.313 0.003 1.14 15.9 0.226 8.1 3.03 0.219 0.004 15.8 0.474 24.44 2.67 0.68 BLT-4 10.70 2.270 5.81 26.4 23.2 8.39 12.1 11.6 12.6 6.26 31.8 381 3.59 0.226 0.025 0.164 4.76 295 1.1 0.005 0.392 4.99 0.094 1.97 0.806 0.294 0.004 6.77 0.19 32.84 2.44 0.69 BLT-5 61.80 4.790 16.6 149 62.2 17.4 40.9 15.3 26.3 14.2 164 398 2.63 0.115 0.067 0.038 21.1 231 0.191 0.003 3.1 14.9 0.202 6.55 2.11 0.068 0.005 6.6 0.171 26.01 3.10 0.78 BLT-6 10.10 3.440 6.08 214 26.6 14.4 35.4 9.57 33.7 5.96 31.3 407 4.76 0.145 0.015 0.08 3.35 132 1.59 <0.002 1.99 2.95 0.05 1.49 0.565 0.174 0.003 4.54 0.122 42.53 2.64 0.86 BLT-7 60.90 5.810 15.9 103 56.2 19.3 46.5 19.1 31.8 13.3 126 610 2.33 0.142 0.065 0.037 19.4 1046 0.092 0.002 2.3 15.5 0.237 7.02 2.44 0.054 0.005 9 0.294 31.94 2.88 0.69 BLT-8 19.80 5.450 10.1 47.8 32.9 4.85 8.93 12.6 10.2 8.96 40.3 4176 2.56 0.074 0.058 0.042 6.13 989 0.445 0.007 0.306 35.2 0.267 5.46 1.11 0.121 0.008 13.6 0.484 331.43 4.92 0.84 BLT-9 7.23 1.040 3.89 29.7 15.9 5.8 8.51 8.6 8.67 4.6 12 1197 2.94 0.063 0.016 0.099 1.96 377 0.894 0.003 0.129 140 0.465 1.23 0.555 0.28 0.009 4.94 0.177 139.19 2.22 0.78 BLT-10 7.37 1.200 4.24 28.3 17.3 4.64 8.3 8.69 8.04 4.2 36 776 3.25 0.029 0.021 0.098 3.96 308 0.912 0.003 0.221 4.85 0.073 1.72 0.694 0.344 0.005 7.11 0.239 89.30 2.48 0.77 BLT-11 3.14 1.320 3.08 18.5 12.2 4.6 7.75 6.71 9.3 3.52 25.3 658 4.56 0.069 0.013 0.058 3.17 362 0.81 0.003 0.218 2.77 0.065 1.18 0.446 0.246 0.004 5.93 0.174 98.06 2.65 0.70 BLT-12 41.60 5.070 15.1 120 56.9 34.5 81.8 20.2 62.9 13.2 65.6 875 4.25 0.193 0.074 0.135 7.95 338 0.235 0.003 3.66 23.9 0.227 5.73 2.55 0.158 0.005 17 0.498 43.32 2.25 0.59 BLT-13 26.50 3.790 11.8 66.1 43.3 24.4 41.6 18.9 126 13.5 82.9 1284 5.55 0.295 0.055 0.199 10.9 473 0.655 0.004 1.58 33.6 0.267 4.52 2.24 0.295 0.005 15.5 0.486 67.94 2.02 0.61 BLT-14 10.70 4.590 13.2 89.3 33.3 40.7 78.8 19 26.2 14 46.8 1545 5.41 0.26 0.034 0.34 6.17 583 1.2 <0.002 5.53 9.37 0.162 2.65 3.3 0.762 0.007 16.6 0.487 81.32 0.80 0.53 BLT-15 19.00 5.170 14.1 331 50.9 5.67 11.2 15.6 10.5 12.8 42.8 1395 3.3 0.079 0.03 0.186 5.74 484 0.761 0.004 0.199 5.28 0.09 2.35 1.39 0.341 0.004 11.7 0.321 89.42 1.69 0.97 BLT-16 7.62 3.170 9.25 142 37 30.4 71 16 34.7 10 19.9 991 7.28 0.334 0.044 0.341 2.96 402 1.44 0.003 0.632 7.83 0.098 1.98 2.86 0.611 0.006 15.2 0.477 61.94 0.69 0.67 BLT-17 27.10 5.350 14.4 82.3 41.5 6.61 16 17 20.3 12.7 32.2 3232 3.21 0.133 0.05 0.101 4.41 1261 0.275 0.004 0.836 11.9 0.179 3.75 1.77 0.235 0.006 14.2 0.452 190.12 2.12 0.84 BLT-18 12.20 2.350 4.14 44.3 14.6 5.09 8.6 10.3 10.6 4.15 12.4 667 5.35 0.078 0.015 0.122 2.66 303 1.09 0.003 0.097 2.4 0.044 0.995 0.616 0.394 0.005 5.47 0.164 64.76 1.62 0.84 BLT-19 15.80 1.930 3.63 229 22.3 5.79 24.3 9.4 14.2 2.81 10.3 862 4.29 0.109 0.009 0.167 1.40 308 1.05 0.008 0.056 16.2 0.07 0.524 0.575 0.552 0.015 3.84 0.107 91.70 0.91 0.90 BLT-20 18.60 2.480 12.1 147 43 13 56.1 12.9 12.9 14.6 27.8 677 4.93 0.104 0.033 0.268 4.36 302 1.06 0.002 1.24 11.8 0.102 3.23 4.12 0.553 0.007 16.2 0.483 52.48 0.78 0.72 BLT-21 47.10 3.460 11.9 243 60.1 19.1 27.3 22.3 20.2 14.7 78.5 1331 2.93 0.116 0.054 0.126 10.3 831 0.415 0.002 0.981 12.2 0.213 4.77 2.29 0.292 0.003 20.4 0.569 59.69 2.08 0.90 BLT-22 32.00 5.080 10.2 274 46.1 6.39 11.4 11.8 10.2 9.33 47.3 1591 3.04 0.094 0.025 0.077 6.82 918 0.653 0.003 0.438 6.38 0.082 2.3 1.07 0.153 0.005 8.82 0.244 134.83 2.15 0.96 BLT-23 28.80 6.550 21.7 378 79 18.6 23.8 19 58 23.3 41.4 781 5.47 0.282 0.038 0.342 5.14 335 1.18 <0.002 0.847 9.84 0.111 3.58 4.41 0.591 0.005 25.9 0.658 41.11 0.81 0.94 BLT-24 193.00 6.780 22.1 114 83.8 11.2 32.6 26.2 55.9 30.3 201 690 2.04 0.103 0.149 0.029 23.7 399 0.046 0.003 2.18 29.6 0.42 15.3 2.12 0.056 0.005 11.7 0.361 26.34 7.22 0.78 BLT-25 41.60 12.700 30 216 91.3 9.76 16.4 23.5 19.9 17 22.1 1 861 11.9 0.146 0.089 0.376 2.78 1013 0.639 0.003 0.573 26 0.23 6.84 4.51 0.499 0.006 24.3 0.638 79.19 1.52 0.93 BLT-26 88.80 3.650 13.4 113 59.6 9.35 21.5 19.6 36.3 23.1 168 875 2.26 0.176 0.105 0.056 19.4 432 0.192 0.002 1.49 25.5 0.382 11.3 1.43 0.032 0.004 10.5 0.318 44.64 7.90 0.84 BLT-27 32.90 7.890 26.9 583 112 5.95 18.2 10.5 49.8 27.1 40.4 1 422 4.16 0.066 0.036 0.499 4.27 781 1.72 0.003 0.312 4.22 0.049 3.96 2.57 0.497 0.004 8.47 0.221 135.43 1.54 0.97 BLT-28 14.00 7.820 16.8 254 53.6 31.3 33.7 16.6 123 20.8 33.1 2 134 7.79 0.215 0.042 0.295 3.49 1024 0.851 0.003 0.8 10.8 0.154 3.32 6.08 0.54 0.008 18.9 0.557 128.55 0.55 0.88 BLT-29 41.20 9.620 19.3 90.5 66.5 9.01 16.5 18.2 18.6 14.4 69 1571 2.64 0.079 0.077 0.035 9.16 892 0.122 0.004 0.939 22.4 0.229 7.77 2.35 0.12 0.008 8.53 0.287 86.32 3.31 0.85 BLT-30 107.00 6.810 17.9 191 72.5 8.77 21.2 35.5 137 27.8 195 308 0.915 0.283 0.144 0.06 22 268 0.057 <0.002 1.88 27.3 0.403 13.9 2.99 0.066 0.006 8.6 0.25 8.68 4.65 0.90 BLT-31 37.60 3.600 14.9 58.4 51.5 8.85 19.8 20.3 75.6 20.4 143 213 2.14 0.072 0.088 0.04 16.3 188 0.047 <0.002 1.53 24.1 0.335 10.9 2.77 0.048 0.01 7.21 0.263 10.49 3.94 0.75 均值 37.85 4.61 12.93 154.88 50.96 14.61 29.73 17.20 44.05 13.96 65.60 1085.07 3.98 0.16 0.05 0.15 8.18 506.19 0.67 <0.003 1.25 18.68 0.19 5.01 2.15 0.29 0.01 11.40 0.34 75.40 2.68 0.79 地壳 23.0 1.73 16.0 143.0 127.0 24.7 81.3 56.0 76.3 16.7 108.0 382.0 1.43 0.177 0.097 0.51 1.23 463.0 1.13 — 0.73 14.0 0.19 7.6 2.07 18.3 1.6 148.0 4.5 — — — 中国煤值 31.80 2.11 4.38 35.10 15.40 7.08 13.70 17.50 41.40 6.55 9.25 140.00 3.08 0.25 0.05 0.84 1.13 159.00 1.08 — 0.47 15.10 0.79 5.48 2.43 9.44 0.62 89.50 3.71 — — — 世界煤值 12.00 1.60 3.90 25.00 16.00 5.10 13.00 16.00 23.00 5.80 14.00 110.00 2.20 0.22 0.03 0.92 1.00 150.00 1.10 — 0.63 7.80 0.97 3.30 2.40 3.70 0.28 36.00 1.20 — — — 中国J-K煤 5.00 2.40 3.00 13.00 12.00 8.00 11.00 9.00 33.00 4.00 7.00 79.00 2.00 0.10 — 0.90 1.80 150.00 1.90 — 0.40 9.00 0.30 4.00 2.00 8.00 0.50 39.00 1.00 — — — 富集系数(R1) 1.19 2.18 2.95 4.41 3.31 2.06 2.17 0.98 1.06 2.13 7.09 7.75 1.29 0.64 1.00 0.18 7.24 3.18 0.62 — 2.66 1.24 0.24 0.91 0.88 0.03 0.02 0.13 0.09 — — — 富集系数(R2) 3.15 2.88 3.32 6.20 3.19 2.86 2.29 1.08 1.92 2.41 4.69 9.86 1.81 0.73 1.67 0.16 8.18 3.37 0.61 — 1.98 2.39 0.20 1.52 0.90 0.08 0.04 0.32 0.28 — — — 富集系数(R3) 7.57 1.92 4.31 11.91 4.25 1.83 2.70 1.91 1.33 3.49 9.37 13.74 1.99 1.60 — 0.17 4.54 3.37 0.35 — 3.13 2.08 0.63 1.25 1.08 0.04 0.02 0.29 0.34 — — — 富集系数(R4) 1.65 2.66 0.81 1.08 0.40 0.59 0.37 0.31 0.58 0.84 0.61 2.84 2.78 0.90 0.52 0.29 6.65 1.09 0.59 — 1.71 1.33 1.00 0.66 1.04 0.02 0.01 0.08 0.08 — — — 富集系数(EF) 2.04 3.30 1.00 1.34 0.50 0.73 0.45 0.38 0.71 1.03 0.75 3.51 3.44 1.12 0.64 0.36 8.23 1.35 0.73 — 2.12 1.65 1.24 0.82 1.29 0.02 0.01 0.10 0.09 — — — 注: “—” 表示无数据;中国煤及世界煤数据据文献[13,17],中国J-K煤数据据来自文献[18],地壳数据据文献[19];EF=(Cx/CSc)e/(Cx/CSc)d,Cx为煤中某种元素平均含量值;CSc为煤中钪元素平均含量值;C'x为地壳中某元素平均含量值;C'Sc为地壳中钪元素平均含量值。 表 2 义马盆地中侏罗世煤样常量元素分析结果Table 2. Content of major elements in middle Jurassic coal from Yima Basin% 样品编号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 平均值 中国煤 SiO2 62.93 5.39 10.98 5.86 29.56 3.92 29.87 11.76 3.54 4.46 3.49 16.38 16.05 6.40 7.10 3.55 8.78 2.62 1.18 3.95 9.95 8.42 5.36 48.46 6.20 55.09 6.56 5.18 18.18 54.55 67.37 16.87 8.47 Al2O3 15.24 2.65 5.36 1.67 10.24 1.48 10.39 4.54 1.46 1.55 1.18 5.41 5.23 2.09 2.48 1.35 4.23 0.91 0.49 1.89 4.52 3.71 2.41 18.70 3.42 17.49 3.28 2.38 6.45 18.07 16.63 5.71 5.98 Fe2O3 9.50 2.12 1.96 0.99 3.91 3.45 2.74 0.48 2.45 0.71 0.92 3.60 2.41 3.82 0.64 1.51 0.79 1.38 35.15 1.96 2.45 1.11 1.39 2.75 1.05 2.30 1.12 2.45 1.63 7.46 2.94 3.46 4.85 MgO 2.69 0.42 0.48 0.45 0.71 0.28 0.93 0.65 0.48 0.45 0.41 0.63 0.61 0.53 0.53 0.46 0.59 0.46 1.17 0.44 0.55 0.57 0.51 0.87 0.60 0.66 0.50 0.55 0.75 0.91 0.77 0.66 0.22 CaO 1.70 1.27 1.22 0.99 0.94 1.19 1.03 1.80 1.19 1.00 0.91 1.17 1.06 1.20 1.17 1.01 1.38 0.91 9.59 0.94 0.91 0.98 0.89 0.53 1.32 0.47 2.43 1.36 1.33 0.41 0.19 1.37 1.23 Na2O 0.16 0.08 0.27 0.10 0.17 0.09 0.16 0.10 0.13 0.08 0.10 0.11 0.09 0.09 0.08 0.08 0.10 0.10 0.08 0.09 0.14 0.14 0.10 0.15 0.10 0.15 0.11 0.09 0.11 0.16 0.18 0.12 0.16 K2O 2.58 0.19 0.26 0.21 1.39 0.15 1.26 0.03 0.13 0.18 0.14 0.53 0.75 0.24 0.23 0.12 0.21 0.08 0.05 0.17 0.43 0.38 0.23 2.09 0.15 2.45 0.27 0.18 0.55 3.47 4.68 0.77 0.19 MnO 0.07 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.02 0 <0.004 0 0.01 0 0.01 0 <0.004 0 0.20 0 0.01 0.01 0 0 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.015 TiO2 0.97 0.08 0.14 0.09 0.43 0.07 0.47 0.23 0.07 0.09 0.07 0.29 0.29 0.13 0.14 0.09 0.17 0.06 0.03 0.08 0.15 0.13 0.11 0.76 0.11 0.78 0.10 0.10 0.33 0.83 0.85 0.27 0.33 P2O5 0.13 0.02 0.04 0.02 0.03 0.08 0.04 0.92 0.28 0.14 0.07 0.07 0.27 0.28 0.28 0.16 0.76 0.06 0.08 0.03 0.09 0.25 0.07 0.13 0.30 0.26 0.20 0.37 0.23 0.10 0.06 0.19 0.092 SiO2/Al2O3 4.13 2.03 2.05 3.51 2.89 2.65 2.87 2.59 2.42 2.88 2.96 3.03 3.07 3.06 2.86 2.63 2.08 2.89 2.43 2.09 2.20 2.27 2.22 2.59 1.81 3.15 2.00 2.18 2.82 3.02 4.05 2.69 1.42 注:中国煤数据据来自文献[13],BLT代表北露天矿。 表 3 义马盆地中侏罗世煤样稀土元素分析结果Table 3. Content of rare earth elements in middle Jurassic coal from Yima Basinug/g 项目 含量/(μg·g−1) La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Y ∑REY δCe δEu (La/Yb)N (La/Sm)N (Gd/Yb)N BLT-1 33.5 60.5 7.44 28.7 5.36 1.07 4.65 0.756 3.42 0.594 1.46 0.215 1.2 0.154 33.9 149.02 0.92 0.66 18.82 3.93 3.13 BLT-2 9.54 18.4 2 7.86 1.48 0.282 1.29 0.216 1.16 0.229 0.604 0.103 0.654 0.088 14.1 43.91 1.01 0.62 9.83 4.05 1.59 BLT-3 11.6 23.1 2.54 9.5 1.73 0.333 1.49 0.249 1.21 0.227 0.611 0.1 0.592 0.082 13.5 53.36 1.02 0.63 13.21 4.22 2.03 BLT-4 6.89 13.6 1.62 6.53 1.34 0.316 1.19 0.214 1.17 0.224 0.608 0.106 0.652 0.091 13.2 34.55 0.98 0.77 7.12 3.23 1.47 BLT-5 30.7 60.3 6.86 26.7 4.74 0.867 3.8 0.6 2.68 0.466 1.25 0.192 1.13 0.149 26.2 140.43 1.00 0.62 18.32 4.07 2.71 BLT-6 6.12 13 1.57 6.74 1.47 0.319 1.44 0.267 1.48 0.288 0.761 0.123 0.745 0.102 18.7 34.43 1.01 0.67 5.54 2.62 1.56 BLT-7 30.6 63.3 7.29 28.6 5.08 1.14 4.17 0.677 3.09 0.538 1.37 0.209 1.22 0.157 30.7 147.44 1.02 0.76 16.91 3.79 2.76 BLT-8 17.2 34 4.06 17.9 4.11 0.942 3.36 0.586 3 0.523 1.29 0.186 1.05 0.138 30.8 88.35 0.98 0.78 11.04 2.63 2.58 BLT-9 5.1 10.8 1.31 5.55 0.979 0.258 0.856 0.149 0.747 0.141 0.387 0.066 0.394 0.055 8.95 26.79 1.01 0.86 8.73 3.28 1.75 BLT-10 3.91 9.47 1.34 6.36 1.21 0.287 1.01 0.18 0.928 0.177 0.471 0.078 0.476 0.063 11.0 25.96 1.00 0.79 5.54 2.03 1.71 BLT-11 4.31 9.33 1.08 4.39 0.97 0.264 0.87 0.154 0.855 0.162 0.445 0.075 0.455 0.062 10.7 23.42 1.04 0.88 6.39 2.79 1.54 BLT-12 15.9 28.1 3.15 12.5 2.72 0.571 2.33 0.431 2.26 0.416 1.1 0.179 1.06 0.144 24.2 70.86 0.96 0.69 10.11 3.68 1.77 BLT-13 27.8 59.1 6.61 24.4 4.17 0.823 3.64 0.567 2.63 0.465 1.2 0.186 1.13 0.147 25.0 132.87 1.05 0.65 16.59 4.19 2.60 BLT-14 25.7 58.1 6.53 24.1 4.02 0.836 3.73 0.603 3.02 0.539 1.41 0.218 1.35 0.169 28.6 130.33 1.08 0.66 12.83 4.02 2.23 BLT-15 20.4 44.7 4.94 18.1 3.21 0.691 2.89 0.484 2.36 0.421 1.06 0.173 1.03 0.13 25.4 100.59 1.07 0.69 13.35 4.00 2.26 BLT-16 6.64 14.4 1.79 8.43 1.88 0.453 1.58 0.299 1.66 0.316 0.83 0.137 0.835 0.111 18.8 39.36 1.01 0.80 5.36 2.22 1.53 BLT-17 66.5 128 12.5 43.4 6.94 1.43 6.15 0.861 3.66 0.557 1.42 0.181 1.06 0.135 30.3 272.79 1.07 0.67 42.30 6.03 4.68 BLT-18 2.72 6.63 0.943 4.18 0.847 0.235 0.828 0.164 0.931 0.19 0.519 0.088 0.543 0.075 11.8 18.89 1.00 0.86 3.38 2.02 1.23 BLT-19 4.37 10.2 1.13 4.19 0.767 0.203 0.723 0.135 0.661 0.125 0.336 0.057 0.344 0.047 8.81 23.29 1.00 0.83 8.56 3.58 1.70 BLT-20 4.54 9.38 1.06 4.19 1.16 0.306 1.10 0.242 1.49 0.306 0.841 0.152 0.957 0.134 16.1 25.86 1.03 0.83 3.20 2.46 0.93 BLT-21 14.1 25.8 2.81 10.2 1.94 0.53 1.76 0.303 1.6 0.305 0.833 0.14 0.853 0.117 17.2 61.29 0.99 0.88 11.14 4.57 1.66 BLT-22 16.7 35.9 4.5 18.8 3.59 0.849 3.06 0.506 2.41 0.43 1.09 0.171 0.995 0.129 26.6 89.13 1.00 0.78 11.32 2.93 2.48 BLT-23 8.72 20.1 2.27 8.71 2.07 0.507 2.05 0.435 2.52 0.5 1.32 0.23 1.39 0.189 29.2 51.01 1.09 0.75 4.23 2.65 1.19 BLT-24 42.2 77.7 9.09 34.9 6.26 1.13 4.79 0.758 3.31 0.566 1.48 0.215 1.29 0.157 30.4 183.85 0.95 0.63 22.06 4.24 3.00 BLT-25 43.7 85 9.19 33.1 5.11 1.12 4.72 0.773 3.62 0.644 1.66 0.255 1.52 0.196 37.6 190.61 1.02 0.70 19.38 5.38 2.51 BLT-26 46.4 83.3 9.4 35.1 6.04 1.08 4.78 0.716 2.99 0.49 1.21 0.165 0.994 0.12 26.5 192.79 0.96 0.61 31.47 4.83 3.88 BLT-27 13.8 27.2 3.11 12.1 2.31 0.599 2.06 0.385 2.06 0.387 1.08 0.181 1.15 0.159 23.5 66.58 1.00 0.84 8.09 3.76 1.45 BLT-28 61.8 123 13 44.9 6.9 1.35 6.23 0.881 3.82 0.646 1.66 0.249 1.49 0.199 34.5 266.13 1.04 0.63 27.96 5.63 3.37 BLT-29 38.7 78.5 8.2 30.3 5.61 1.15 4.78 0.783 3.85 0.693 1.81 0.283 1.67 0.226 37 176.56 1.06 0.68 15.62 4.34 2.31 BLT-30 58.1 107 12.4 47.4 8.32 1.5 7.04 1.08 4.52 0.73 1.84 0.253 1.49 0.191 43.1 251.86 0.96 0.60 26.29 4.39 3.81 BLT-31 52.7 95.2 11.1 41.3 6.85 1.18 5.50 0.808 3.3 0.54 1.35 0.181 1.03 0.126 27.5 221.17 0.95 0.59 34.50 4.84 4.31 均值 23.58 46.23 5.19 19.65 3.52 0.73 3.03 0.49 2.34 0.41 1.07 0.17 0.99 0.13 23.67 149.02 1.01 0.72 14.49 3.76 2.31 中国煤 22.50 46.70 6.42 22.30 4.07 0.84 4.65 0.62 3.74 18.20 0.96 1.79 0.64 0.38 2.08 136.00 — — — — — 世界煤 11.00 23.00 3.50 12.00 2.00 0.47 2.70 0.32 2.10 8.40 0.54 0.93 0.31 0.20 1.00 68.47 — — — — — 富集系数(CC) 2.14 2.01 1.48 1.97 1.76 1.55 1.12 1.53 1.11 0.049 1.98 0.18 3.19 0.65 23.67 2.18 — — — — — 注:中国煤数据与世界煤数据来源于文献[13],$\delta \text{Ce}\text{=}{\text{Ce}}_{\text{N}}/\sqrt{{\text{La}}_{\text{N}}\text{×}{\text{Pr}}_{\text{N}}} $,CeN、LaN、PrN为Ce、La、Pr元素球粒陨石标准化值;$\delta \text{Eu}\text{=}{\text{Eu} }_{\text{N} }/\sqrt{ {\text{Sm} }_{\text{N} }\text{×}{\text{Gd} }_{\text{N} } }$,EuN、SmN、GdN为元素球粒陨石标准化值[20];球粒陨石数据据文献[21];富集系数(CC)为样品中稀土元素含量/世界煤中稀土元素含量;“—” 为无数据。 3. 结果与讨论
3.1 常量元素分析
煤样常量元素SiO2和P2O5平均含量是中国煤的1.99倍,K2O含量为4.03倍;SiO2/Al2O3值是中国煤[13]的1.9倍,高岭石(1.18)[14-15]的2.3倍;其余值整体和中国煤相当(表2)。常量元素中SiO2占主导地位,Al2O3含量仅为中国煤的95%,和Si含量不具有一致性。
3.2 微量元素分析
煤样微量元素含量相对于中国煤、世界煤、中国侏罗−白垩纪煤、地壳丰度的比值(R1、R2、R3、R4)见表1。其中,比值>2表示富集,介于0.5 ~ 2表示正常含量,小于0.5表示贫化[16]。同时,煤以有机质为主,无机质含量低。因此,选择地壳中化学性质稳定的Sc元素作为基准计算富集系数(FE),FE>10为强烈富集,FE>5为富集,0.5< FE<5为正常,FE< 0.5为亏损[16]。
结果显示(表2,图2),研究所用煤样与中国煤相比(R1),Be、Sc、V、Cr、Co、Ni、Ga、Rb、Sr、Cs、Ba、Tl为富集;与世界煤(R2)和中国侏罗煤(R3)相比,Li、Sc、V、Cr、Ga、Rb、Sr、Cs、Ba为富集,且后者比值整体偏大。与Sc元素相比,EF值大于5 的只有Cs元素。同时按照GLUSKOTER等提出的煤中微量元素高于地壳克拉克值6倍以上为富集的原则(R4)[22-23],也只有Cs元素。
煤中Cs常与黏土矿物、云母和长石等富钾矿物结合,与常量元素中K异常富集具有一致性[18]。在所有富集系数中,Sb、Nb、Ta、Zr、Hf值均远小于0.5,属于亏损元素。Nb和Ta属于强的亲氧元素,常赋存于角闪石、黑云母等含钽矿物中;Hf赋存在锆矿物中,和Zr具有一致性,本次研究两元素同样含量较低;Sb属于亲铜元素,常来源于热液[18]。
综合分析富集元素和亏损元素分布情况,研究区煤层未受岩浆、热液影响。
3.3 稀土元素分析
研究煤样稀土元素(REY)总体含量整体较高,介于1.09 ~ 272.79 μg/g,均值为149.02 μg/g,略大于中国煤均值[13],为世界煤[13]均值的2.18倍(表3)。稀土元素总量富集系数为1.10,表明整体为轻微富集。其中,Y(CC=23.67)十分富集,La(CC=2.14)、Ce(CC=2.01)轻微富集,Ho(CC=0.049)、Tm(CC=0.18)显著亏损,其余元素均接近世界煤均值。
对煤样稀土元素测值进行标准化处理,并绘制配分曲线(图3)。结果表明,除样品BLT-31之外,其他样品稀土元素的分布模式相近,整体呈左高右低的“V”型曲线,轻稀土较为富集,重稀土相对亏损。煤样(La/Yb)N范围为3.20~42.30,均值为14.49,说明轻、重稀土元素整体分异程度较高;(La/Sm)N范围为2.02~6.03(均值3.76),(Gd/Yb)N范围为0.93~4.68(均值2.31),说明轻、重稀土均较为富集。
一般情况下,δEu负异常是由陆源碎屑继承而来[24]。煤样δEu范围为0.59~0.88,均值为0.72,整体呈现出显著负Eu异常,表明采样煤层沉积期物源来自于陆源碎屑。一般δCe负异常为海相环境[18, 25],煤样δCe范围为0.92~1.09,均值为1.01,呈现出正Ce异常,表明古泥炭沼泽未受海水影响,即陆相沉积。
3.4 沉积环境分析
鉴于微量元素和稀土元素的良好稳定性,常被作为物源的指示剂,以及用来研究沉积环境[24]。但是煤内的微量元素富集受各种因素的影响,只有具有沉积成因的微量元素才可以进行沉积环境分析[26]。
3.4.1 氧化还原环境
Th和U在还原状态下化学性质相似,但在氧化环境下有较大差别[27]。在陆表环境下Th为+4价,十分稳定,不易溶解。U在强还原环境下为+4价,在沉积物中富集;强氧化环境下为+6价,极易溶解,导致沉积物中U减少。一般认为,ωTh/ωU值为0~2时,表现为贫氧环境,达到8时为强氧化环境[28]。煤样Th/U比变化在0.55~7.9(图4),均值为2.68,整体为弱还原环境。
Ni在还原状态和碱性条件下易于富集,V在缺氧状态下以有机络合物形式沉淀[29]。ωV/ω(V+Ni)>0.84时,为水体分层强的厌氧环境;比值处于0.6~0.84时,水体分层较弱的厌氧环境;比值处于0.46~0.60时,水体分层弱的贫氧环境[30-31]。煤样V/(V+Ni)范围为0.53~0.97,多数样品在0.53~0.85,均值0.79,反映采样煤层沉积期可能处于水体分层较弱的厌氧环境。
Elderfield等提出的Ce异常参数Ceanom也广泛用来判别古氧化还原条件[32]:
$$ \text{}{\text{Ce}}_{\text{anom}}\text={\text{lg{3}\text{Ce}}_{\text{N}}/\text{(2}{\text{La}}_{\text{N}}\text+{\text{Nd}}_{\text{N}}\text{)}} $$ 式中,N为稀土元素的北美页岩标准化值。Ceanom>−0.1时,指示还原环境;Ceanom<−0.1时,指示氧化环境。煤样Ceanom介于−0.07~0.02,平均−0.03,均大于−0.1,指示其为还原环境,CeN、LaN、NdN分别代表本论文Ce、La、Nd测试的数据与北美页岩该元素标准值的比值。
从地化特征分析,采样煤层古泥炭沼泽经历了3阶段氧化还原环境演化(图4)。
3.4.2 古气候
根据已有研究成果,喜湿型元素有Cr、Ni、Mn、Cu、Co、Cs、Hf等,喜干型元素有B、Mo、Mg、Zn、Na、Ca等,而喜干型元素Sr与喜湿型元素Cu之间的比值更能指示温暖潮湿的气候和炎热干燥的气候[33-34]。ωSr/ωCu的比值为1~10时指示温暖潮湿气候,比值大于10时指示炎热干燥气候[35-36]。研究区煤层中ωSr/ωCu的变化范围基本在30~200,只有少量样品在1~10(图5),平均值为75.4,表明义马盆地成煤时处于炎热干燥的气候。
赵增义等[37]提出了气候指数C值:
$$ \begin{split} {{C}}=& \sum\omega({\rm{Fe}}+{\rm{Mn}}+{\rm{Cr}}+{\rm{Ni}}+{\rm{V}}+{\rm{Co}})/ \\ &\sum\omega({\rm{Ca}}+{\rm{Mg}}+{\rm{Sr}}+{\rm{Ba}}+{\rm{K}}+{\rm{Na}}) \end{split} $$ C值与气候的对应关系为:0~0.2干旱,0.2~0.4半干旱,0.4~0.6半干旱−半潮湿,0.6~0.8半潮湿,0.8~1潮湿。煤样C值介于0.02~3.07,平均0.31,整体处于半干旱的气候环境,从地化特征分析,采样煤层沉积期经历多期次小规模的气候变化(图5)。
中侏罗世早期,我国古气候具有明显的分带性,北方以温暖潮湿气候为主,如吐哈盆地、塔里木盆地、柴达木盆地及鄂尔多斯盆地[38-39],东南部以半干旱−半潮湿为主,如四川盆地北部、合肥盆地等[39],西南为干旱气候区,如羌塘盆地、昌都盆地等[39-40],研究结果与前人基本一致。
4. 结 论
1)义马盆地中侏罗世煤常量元素含量与中国煤相比,SiO2和P2O5平均含量是中国煤的1.99倍,K2O含量为4.03倍,而Al2O3含量仅为中国煤的95%,和Si含量不具有一致性。
2)微量元素中Cs富集,Sb、Nb、Ta、Zr、Hf亏损,表明研究区煤层未受岩浆、热液影响;稀土元素整体为轻微富集,δEu负异常,而δCe正异常,表明研究区物源主要来自于陆源碎屑,且成煤期未受海水影响。
3)通过ωTh/ωU、ωV/ω(V+Ni)及Ceanom分析表明,研究区成煤期处于还原环境,且经历了3次大的氧化还原环境的演化过程;Sr/Cu和气候指数分析表明,研究区成煤期整体处于半干旱的环境,且经历了多期次的小规模的气候变迁过程。
-
表 1 综放工作面顶板事故统计
Table 1 Statistics of roof accident in fully-mechanized top-coal caving face
矿井 工作面 煤厚/m 顶板特征 支架型号 顶板类型 灾害情况 崔木煤矿 1302 12.00 7 m砂质泥岩、6 m泥岩 ZYF10500-21-38 松软顶板 多次大面积切顶压架 铁北煤矿 右三片 13.90 15.6 m砂质泥岩与泥质砂岩互层 ZF8000-18-34 多次冒顶、大面积切顶压架 招贤煤矿 1304 10.88 9~11 m泥岩与砂质泥岩互层 ZF16000-21-38 切顶压架、出水 魏家地煤矿[25] 东1103 11.00 0.4 m炭质泥岩、1.8~5.1 m粗粒砂岩 ZF4800-17-28 煤壁片帮,切顶压架及漏顶 潞新二矿[26] W4205 6.60 0.14 m炭质泥岩、11.5 m粉细砂岩或中砂岩互层,局部有1.2~2.3 m泥页岩或泥岩 ZF8000-18-32 冒顶及切顶压架,前部刮板输送机被压死 新安矿 12261 4.22 0~2 m炭质泥岩、黑色泥岩,
0~3.5 m砂泥岩砂岩ZFQ2000-15-23 煤壁片帮、架前顶板冒顶 徐庄煤矿[27] 7230 5.53 3.49 m砂质泥岩、15.5~19.3 m
中砂岩ZF2800-16-26 频繁发生冒顶事故 山西天地王坡煤业 3201 5.90 3.8 m砂质泥岩、10 m中砂岩 多次冒顶及部分支架被压死 曹家滩煤矿 122108 11.20 7~22 m细粒砂岩、中粒砂岩 ZFY21000-34-63D 坚硬顶板 初采期间顶板大面积突然垮落及压架 塔山煤矿 8103 13.53 8 m中粗砂岩 ZF13000-25-38 矿压显现强烈,屡有压架现象 酸刺沟煤矿 6上105-2 14.58 13.90 m含砾粗砂岩 ZF15000-24-45 顶板大面积突然垮落,压架 千树塔煤矿 11302 10.61 16.66 m长石砂 ZFY18000-27-50 动载冲击、支架损坏 安平煤矿[25] 8117 12.75 24.00 m粗砂岩 ZF10000-23-37 顶板大面积突然垮落导致瓦斯爆炸 硫磺沟煤矿[22] 06 6.52 36.09 m砂岩组 ZF7200-19-38 多次发生大能量矿震及压架 芦子沟煤矿 3108 25.00 13.80 m粗砂岩 ZF10000-18-35 煤壁片帮、异常强矿压显现 大佛寺煤矿 40109 12.20 5.74 m粗砂岩、4.96 m粉砂岩 ZF10000-24-36 多次大面积漏顶、压架 夏阔坦煤矿[25] 1007 5.50 6.85 m细粒砂岩、13.90 m石英砂岩 顶板大面积垮落引燃瓦斯及压架 -
[1] 康红普,徐 刚,王彪谋,等. 我国煤炭开采与岩层控制技术发展40 a及展望[J]. 采矿与岩层控制工程学报,2019,1(2):7−39. KANG Hongpu,XU Gang,WANG Biaomou,et al. Forty years development and prospects of underground coal mining and strata control technologies in China[J]. Journal of Mining and Strata Control Engineering,2019,1(2):7−39.
[2] 王家臣. 我国综放开采技术及其深层次发展问题的探讨[J]. 煤炭科学技术,2005,33(1):14−17. doi: 10.3969/j.issn.0253-2336.2005.01.005 WANG Jiachen. Fully mechanized longwall top coal caving technology in China and discussion on issues of further development[J]. Coal Science and Technology,2005,33(1):14−17. doi: 10.3969/j.issn.0253-2336.2005.01.005
[3] 闫少宏,徐 刚,张学亮,等. 特厚煤层综放工作面大面积切顶压架原因分析[J]. 煤炭科学技术,2015,43(6):14−18. YAN Shaohong,XU Gang,ZHANG Xueliang,et al. Reason analyses on large area roof cutting and collapse of hydraulic supports at fully-mechanized top coal caving mining face in ultra thick coal seams[J]. Coal Science and Technology,2015,43(6):14−18.
[4] 杨俊哲,郑凯歌,王振荣,等. 坚硬顶板动力灾害超前弱化治理技术[J]. 煤炭学报,2020,45(10):3371−3379. YANG Junzhe,ZHENG Kaige,WANG Zhenrong,et al. Technology of weakening and danger-breaking dynamic disasters by hard roof[J]. Journal of China Coal Society,2020,45(10):3371−3379.
[5] 杨俊哲,郑凯歌. 厚煤层综放开采覆岩动力灾害原理及防治技术[J]. 采矿与安全工程学报,2020,37(4):750−758. YANG Junzhe,ZHENG Kaige. The mechanism of overburden dynamic disasters and its control technology in top-coal caving in the mining of thick coal seams[J]. Journal of Mining & Safety Engineering,2020,37(4):750−758.
[6] 黄炳香,赵兴龙,陈树亮,等. 坚硬顶板水压致裂控制理论与成套技术[J]. 岩石力学与工程学报,2017,36(12):2954−2970. HUANG Bingxiang,ZHAO Xinglong,CHEN Shuliang,et al. Theory and technology of controlling hard roof with hydraulic fracturing in underground mining[J]. Chinese Journal of Rock Mechanics and Engineering,2017,36(12):2954−2970.
[7] 宁 静,徐 刚,张春会,等. 综放工作面多区支撑顶板的力学模型及破断特征[J]. 煤炭学报,2020,45(10):3418−3426. NING Jing,XU Gang,ZHANG Chunhui,et al. Mechanical model and fracturing characteristics of multi-area supporting roof in fully mechanized mining working face[J]. Journal of China Coal Society,2020,45(10):3418−3426.
[8] 徐 刚,张春会,蔺星宇,等. 基于分区支承力学模型的综放工作面顶板矿压演化与压架预测[J]. 煤炭学报,2022,47(10):3622−3633. XU Gang,ZHANG Chunhui,LIN Xingyu,et al. Predicting ground pressure evolution and support crushing of fully mechanized top coal caving face based on zoning support mechanical model[J]. Journal of China Coal Society,2022,47(10):3622−3633.
[9] 杨 科,刘文杰,焦 彪,等. 深部厚硬顶板综放开采覆岩运移三维物理模拟试验研究[J]. 岩土工程学报,2021,43(1):85−93. YANG Ke,LIU Wenjie,JIAO Biao,et al. Three-dimensional physical simulation of overburden migration in deep thick hard roof fully-mechanized caving mining[J]. Chinese Journal of Geotechnical Engineering,2021,43(1):85−93.
[10] 杜科科,吴 帅. 上位厚硬岩层综放工作面强矿压显现及防治技术[J]. 煤炭科学技术,2021,49(S2):25−29. DU Keke,WU Shuai. Strong ground pressure behavior and prevention technology of fully mechanized caving face in upper thick and hard rock strata[J]. Coal Science and Technology,2021,49(S2):25−29.
[11] 李修冠,张向阳,张 懿,等. 坚硬顶板特厚煤层初采初放卸压控制及回采率分析研究[J]. 矿业研究与开发,2022,42(6):20−28. LI Xiuguan,ZHANG Xiangyang,ZHANG Yi,et al. Study on pressure releasing control and recovery rate analysis of initial mining and initial release in extra-thick coal seam with hard roof[J]. Mining Research and Development,2022,42(6):20−28.
[12] 秦宾宾,何富连,吕 凯,等. 特厚煤层综放末采基本顶梯形块结构稳定性研究[J]. 采矿与安全工程学报,2022,39(3):489−498. QIN Binbin,HE Fulian,LYU Kai,et al. Research on structural stability of main roof trapezoid block in the terminal mining period of fully mechanized top coal caving face of extra thick coal seam[J]. Journal of Mining & Safety Engineering,2022,39(3):489−498.
[13] 来兴平,许慧聪,康延雷,等. 综放面覆岩运动“时-空-强”演化规律分析[J]. 西安科技大学学报,2018,38(6):871−877. LAI Xingping,XU Huicong,KANG Yanlei,et al. Analysis on “spatio-tempo-intension” evolution rules of overburden strata movement in fully mechanized top-coal caving face[J]. Journal of Xi’an University of Science and Technology,2018,38(6):871−877.
[14] 徐 刚. 基于实测数据的非坚硬顶板综采工作面大面积来压原因分析[J]. 煤矿开采,2014,19(2):98−100. XU Gang. Cause analysis of large-area weighting of full-mechanized mining face under non-hard roof based on actual measurement data[J]. Coal Mining Technology,2014,19(2):98−100.
[15] 徐 刚,张春会,于永江,等. 综放工作面覆岩破断和压架的试验研究及预测模型[J]. 岩土力学,2020,41(S1):106−114. XU Gang,ZHANG Chunhui,YU Yongjiang,et al. Experiment of overburden breaking and compression frame of fully mechanized caving face and the prediction model[J]. Rock and Soil Mechanics,2020,41(S1):106−114.
[16] 徐 刚. 综放工作面切顶压架机理及应用研究[D]. 北京: 煤炭科学研究总院, 2019. XU Gang. Research on mechanism and application of roof cutting and support crushing in fully-mechanized caving face[D]. Beijing: China Coal Research Institute, 2019.
[17] 王 凯,杨宝贵,王鹏宇,等. 软弱厚煤层沿空留巷变形破坏特征及控制研究[J]. 岩土力学,2022,43(7):1913−1925. WANG Kai,YANG Baogui,WANG Pengyu,et al. Deformation and failure characteristics of gob-side entry retaining in soft and thick coal seam and the control technology[J]. Rock and Soil Mechanics,2022,43(7):1913−1925.
[18] 杨永康,李建胜,康天合,等. 浅埋厚积岩松软顶板综放采场矿压特征工作面长度效应[J]. 岩土工程学报,2012,34(4):709−716. YANG Kangyong,LI Jiansheng,KANG Tianhe,et al. Effect of working face length on underground pressure characteristics by fully-mechanized top-coal caving mining under shallow-buried thick bedrock loose roof[J]. Chinese Journal of Geotechnical Engineering,2012,34(4):709−716.
[19] 高士岗. 大柳塔煤矿综放工作面端头压架机理及防治技术[J]. 煤炭工程, 2018, 50(9): 52-55. GAO Shigang. Mechanism and prevention of supports crushing in the ends of fully mechanized top-coal caving face in Daliuta Coal Mine[J]. Coal Engineering. 2018, 50(9): 52-55.
[20] 崔 峰, 冯港归, 贾 冲, 等. 冲击地压矿井近距离特厚煤层综放面推进速度研究[J]. 煤炭科学技术: 1-11[2023-03-13]. http://kns.cnki.net/kcms/detail/11.2402.TD.20220802.1106.002.html. CUI Feng, FENG Ganggui, JIA Chong, et al. Study on advancing speed of fully mechanized top-coal caving face in short-distance extra-thick coal seam in rock burst mine[J]. Coal Science and Technology, 1-11[2023-03-13]. http://kns.cnki.net/kcms/detail/11.2402.TD.20220802.1106.002.html.
[21] 吴锋锋,岳 鑫,刘长友,等. 急倾斜厚煤层开采覆岩结构演化特征及支架工作阻力计算[J]. 采矿与安全工程学报,2022,39(3):499−506. WU Fengfeng,YUE Xin,LIU Changyou,et al. Movement law of overburden in steep inclined ultra thick seam and calculation of support working resistance[J]. Journal of Mining & Safety Engineering,2022,39(3):499−506.
[22] 王高昂,朱斯陶,姜福兴,等. 倾斜厚煤层综放工作面煤柱-关键层结构失稳型矿震机理[J]. 煤炭学报,2022,47(6):2289−2299. WANG Gaoang,ZHU Sitao,JIANG Fuxing,et al. Seismic mechanism of coal pillar-key layer structure in fully mechanized caving face of inclined thick coal seam[J]. Journal of China Coal Society,2022,47(6):2289−2299.
[23] 马资敏,吴世良,穆玉兵,等. 特厚煤层综放采场矿压异常显现机理与控制[J]. 煤炭学报,2018,43(S2):359−368. MA Zimin,WU Shiliang,MU Yubing,et al. Mechanism and control of strata pressure behavior anomaly in fully mechanized top-coal caving face of extra-thick coal seam[J]. Journal of China Coal Society,2018,43(S2):359−368.
[24] 袁瑞甫,杜 锋,宋常胜,等. 综放采场重复采动覆岩运移原位监测与分析[J]. 采矿与安全工程学报,2018,35(4):717−725. YUAN Ruifu,DU Feng,SONG Changsheng,et al. In-site monitoring and analysis on overburden movements for multiple seam mining using longwall caving method[J]. Journal of Mining & Safety Engineering,2018,35(4):717−725.
[25] 煤矿安全网. 甘肃靖远煤电股份有限公司魏家地煤矿“4·11”顶板事故调查报告[OL]. https://www.mkaq.org/html/2020/06/09/524316.shtml. [26] 蒲会山. 潞新矿区综放工作面片帮冒顶的治理与预防[J]. 山东煤炭科技,2016,187(3):67−68,73. doi: 10.3969/j.issn.1005-2801.2016.03.026 PU Huishan. Treatment and prevention of rib spalling in fully mechanized caving face of Lucheng new mining area[J]. Shandong Coal Science and Technology,2016,187(3):67−68,73. doi: 10.3969/j.issn.1005-2801.2016.03.026
[27] 窦红平,张永兵,唐晓明. 综放工作面松软破碎煤体防片帮冒顶技术探讨[J]. 能源技术与管理,2010,132(2):59−61. doi: 10.3969/j.issn.1672-9943.2010.02.027 DOU Hongping,ZHANG Yongbing,TANG Xiaoming. Technical discussion on the disaster prevention of rib spalling and roof caving of soft and broken coal in fully mechanized top coal caving face[J]. Energy Technology and Management,2010,132(2):59−61. doi: 10.3969/j.issn.1672-9943.2010.02.027