高级检索

干法重介质流化床压力多尺度分析与流化质量表征

张赣苏, 董良, 周恩会, 周晨阳, 段晨龙, 赵跃民

张赣苏,董 良,周恩会,等. 干法重介质流化床压力多尺度分析与流化质量表征[J]. 煤炭科学技术,2023,51(4):215−223

. DOI: 10.13199/j.cnki.cst.2022-1571
引用本文:

张赣苏,董 良,周恩会,等. 干法重介质流化床压力多尺度分析与流化质量表征[J]. 煤炭科学技术,2023,51(4):215−223

. DOI: 10.13199/j.cnki.cst.2022-1571

ZHANG Gansu,DONG Liang,ZHOU Enhui,et al. Multi-scale pressure analysis and fluidization quality characterization of dry dense medium fluidized bed[J]. Coal Science and Technology,2023,51(4):215−223

. DOI: 10.13199/j.cnki.cst.2022-1571
Citation:

ZHANG Gansu,DONG Liang,ZHOU Enhui,et al. Multi-scale pressure analysis and fluidization quality characterization of dry dense medium fluidized bed[J]. Coal Science and Technology,2023,51(4):215−223

. DOI: 10.13199/j.cnki.cst.2022-1571

干法重介质流化床压力多尺度分析与流化质量表征

基金项目: 

国家自然科学基金资助项目(52274275);“科技兴蒙”行动重点专项资助项目(2021EEDSCXSFQZD007);江苏省研究生科研与实践创新计划资助项目(KYCX22_2634)

详细信息
    作者简介:

    张赣苏: (1998—),男,江苏南通人,博士研究生。E-mail: gansuzhang@cumt.edu.cn

    通讯作者:

    董良: (1987—),男,山东烟台人,教授,博士生导师。E-mail:dongl@cumt.edu.cn

  • 中图分类号: TD94

Multi-scale pressure analysis and fluidization quality characterization of dry dense medium fluidized bed

Funds: 

National Natural Science Foundation of China (52274275); Key Project of "Science and Technology to Prosper Mongolia" Action (2021EEDSCXSFQZD007); Jiangsu Graduate Research and Practice Innovation Program (KYCX22_2634)

  • 摘要:

    选煤是煤炭清洁加工利用的源头技术,干法选煤是干旱缺水地区与易泥化煤炭高效分选提质的重要途径。干法重介质流化床通过上升气流驱动加重质颗粒流化形成一定密度的气固流态化床层,实现对煤炭按密度分选,床层密度均匀稳定性即床层流化质量是决定分选精度的关键。受到气流、气泡、运动内构件、入料等多因素扰动,床层流化行为复杂多变,压力信号呈现出非均匀性、非线性、多尺度特征。基于干法重介质流化床压力信号的轴向差异传递与横向等效扩散特性,着重研究了床层轴向压差波动特征,提出流化质量定量表征方法。结果表明:基于时域分析可知,Geldart A类加重质颗粒床层总压降概率密度分布接近于正态分布;当床层散式膨胀时,由于颗粒间接触力的分布不均,概率密度呈现右偏且尖峰的偏离正态分布。通过频域分析发现,在床层膨胀区间的中末期,气泡主频主导了流化床的整个轴向区间;完全流化后的流化床,气泡主频仅控制着床层中部区域,床层浓度信号主频沿床层轴向分布变化明显。结合时域和频域信号分析结果,提出以轴向床层浓度主频为子区间波动标准差权重值的流化质量表征模型,可以综合评估干法重介质流化床的密度分布均匀性和稳定性,为干法重介质流化床分选密度稳态调控与精准分选提供有力支撑。

    Abstract:

    Coal beneficiation is the source technology of clean processing and utilization of coal. Dry coal beneficiation is an important way for efficient separation and upgrading of easily sliming coal in arid area. Dry dense medium fluidized bed forms a certain density of gas-solid fluidized bed by updraft-driven heavy medium particles fluidization, thus achieving coal separation according to bed density. The uniformity and stability of bed density, namely the bed fluidization quality, is the key to determine the separation accuracy. Due to the disturbance of airflow, bubbles, moving internals, feeding and other factors, the fluidization behavior of the bed is complex and changeable, and the pressure signal shows non-uniformity, non-linearity and multi-scale characteristics. Based on the characteristics of axial differential transmission and lateral equivalent diffusion of pressure signal in dry dense medium fluidized bed, the fluctuation characteristics of axial differential pressure were studied emphatically, and a quantitative characterization method of fluidization quality was proposed. The results show that: Based on time domain analysis, the probability density distribution of total pressure drop in Geldart A type separation fluidized bed is close to normal distribution. When the bed is in the particulate expansion, due to the uneven distribution of contact force between particles, the probability density shows the right deviation and the peak, deviating from the normal distribution. Through frequency domain analysis, it is found that the dominant frequency of bubbles dominates the whole axial interval of fluidized bed at the later stage of bed expansion. After complete fluidization, the dominant frequency of bubbles only controls the central region of the bed. The dominant frequency of bed concentration signal changes obviously along the bed axial distribution. Combined with the results of time-domain and frequency-domain signal analysis, a fluidization quality characterization model was proposed, where the standard deviation of axial fluctuation is weighted and averaged, and the dominant frequency of sub-bed concentration is taken as the weight value. This model can comprehensively evaluate the uniformity and stability of density distribution of dry dense medium fluidized bed, and provide strong support for the steady-state control and accurate separation of dry dense medium fluidized bed.

  • 图  1   试验设备示意

    Figure  1.   Schematic of test equipment

    图  2   总床层压降标准差随气速的变化

    Figure  2.   Variation of standard deviation of total bed pressure with gas velocity

    图  3   总床层压降偏度随气速的变化

    Figure  3.   Variation of skewness of total bed pressure with gas velocity

    图  4   总床层压降峰度随气速的变化

    Figure  4.   Variation of kurtosis of total bed pressure with gas velocity

    图  5   初始流化时压差信号中的暂态空隙

    Figure  5.   Short-lived void reflected in differential pressure signal during initial fluidization

    图  6   床层压降主频随气速的变化

    Figure  6.   Change of bed pressure drop frequency with gas velocity

    图  7   流化质量指数修正与对比

    Figure  7.   Correction and comparison of fluidization quality index

    表  1   颗粒参数性质

    Table  1   Parameter properties of particles

    颗粒类型平均粒径/
    μm
    真密度/
    (kg·m−3)
    堆密度/
    (kg·m−3)
    最小流化速度/
    (cm·s−1)
    Geldart A83.20460025400.83
    下载: 导出CSV

    表  2   不同流化流态下的理想特征频率

    Table  2   Ideal characteristic frequency for different fluidization regimes

    流化流态 单泡多泡爆发气泡
    频率/Hz0.643.18~6.371.11
    下载: 导出CSV

    表  3   不同静床高下的理论自然振荡频率

    Table  3   Theoretical natural oscillation frequency of different static bed heights

    静床高/cm7060504030
    自然振荡频率/Hz0.570.660.801.001.32
    下载: 导出CSV
  • [1] 赵啦啦,江海深,赵跃民,等. 湿黏细粒煤干法筛分理论及交叉筛技术发展现状[J]. 煤炭科学技术,2022,50(10):251−258.

    ZHA0 Lala,JIANC Haishen,ZHA0 Yuemin,et al. Review of dry screening theory and cross screening technologyfor wet cohesive fine coal[J]. Coal Science and Technology,2022,50(10):251−258.

    [2] 王国法,任世华,庞义辉,等. 煤炭工业“十三五”发展成效与“双碳”目标实施路径[J]. 煤炭科学技术,2021,49(9):1−8. doi: 10.13199/j.cnki.cst.2021.09.001

    WANG Guofa,REN Shihua,PANG Yihui,et al. Development achievements of China's coal industry during the 13th Five-Year Plan period and implementation path of “dual carbon"[J]. Coal Science And Technology,2021,49(9):1−8. doi: 10.13199/j.cnki.cst.2021.09.001

    [3] 赵跃民,张亚东,周恩会,等. 清洁高效干法选煤研究进展与展望[J]. 中国矿业大学学报,2022,51(3):607−616.

    ZHAO Yuemin,ZHANG Yadong,ZHOU Enhui,et al. Research progress and prospect of clean and efficient dry coal separation[J]. Journal of China University of Mining & Technology,2022,51(3):607−616.

    [4] 周晨阳,贾 颖,赵跃民,等. 介尺度视角下干法重介流态化分选过程强化[J]. 化工学报,2022,73(6):2452−2467.

    ZHOU Chenyang,JIA Ying,ZHAO Yuemin,et al. Intensification of dry dense medium fluidization separation process from a mesoscale perspective[J]. CIESC Journal,2022,73(6):2452−2467.

    [5]

    DAI W,ZHANG L,FU J,et al. Dual-rate adaptive optimal tracking control for dense medium separation process using neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems,2020,32(9):4202−4216.

    [6]

    ZHOU C,LIU X,ZHAO Y,et al. Recent progress and potential challenges in coal upgrading via gravity dry separation technologies[J]. Fuel,2021,305:121430. doi: 10.1016/j.fuel.2021.121430

    [7]

    BI H T. A critical review of the complex pressure fluctuation phenomenon in gas–solids fluidized beds[J]. Chemical Engineering Science,2007,62(13):3473−3493. doi: 10.1016/j.ces.2006.12.092

    [8]

    XIANG J,LI Q,WANG A,et al. Mathematical analysis of characteristic pressure fluctuations in a bubbling fluidized bed[J]. Powder Technology,2018,333:167−179. doi: 10.1016/j.powtec.2018.04.030

    [9]

    VAN OMMEN J R,SASIC S,VAN DER SCHAAF J,et al. Time-series analysis of pressure fluctuations in gas–solid fluidized beds–A review[J]. International Journal of Multiphase Flow,2011,37(5):403−428. doi: 10.1016/j.ijmultiphaseflow.2010.12.007

    [10]

    ZHAO Y,LI G,LUO Z,et al. Industrial application of a modularized dry-coal-beneficiation technique based on a novel air dense medium fluidized bed[J]. International Journal of Coal Preparation and Utilization,2017,37(1):44−57. doi: 10.1080/19392699.2015.1125344

    [11] 盛 成. 浓相气固分选流态化非稳定性研究 [D]. 徐州: 中国矿业大学, 2018.

    SHENG Cheng. Instability analysis of dense gas solid separation fluidization [D]. Xuzhou: China University of Mining and Technology, 2018.

    [12]

    LUO Z,ZHAO Y,LV B,et al. Dry coal beneficiation technique in the gas–solid fluidized bed: a review[J]. International Journal of Coal Preparation and Utilization,2022,42(4):986−1014. doi: 10.1080/19392699.2019.1678469

    [13] 张 勇. 气固分选流化床中多组分颗粒分层与混合的数值模拟研究 [D]. 徐州: 中国矿业大学, 2019.

    ZHANG Yong. Numerical study of the segregation and mixing of polydisperse particles in gas-solid separating fluidized beds [D]. Xuzhou: China University of Mining and Technology, 2019.

    [14]

    XIANG J,LI Q,TAN Z,et al. Characterization of the flow in a gas-solid bubbling fluidized bed by pressure fluctuation[J]. Chemical Engineering Science,2017,174:93−103. doi: 10.1016/j.ces.2017.09.001

    [15] 向 杰. 气固流化床的压力和空隙率波动信号分析 [D]. 北京: 清华大学, 2018.

    XIANG Jie. Analysis of pressure and voidage fluctuations in gas-solid fluidized beds [D]. Beijing: Tsinghua University, 2018.

    [16]

    GHEORGHIU S,VAN OMMEN J,COPPENS M-O. Power-law distribution of pressure fluctuations in multiphase flow[J]. Physical Review E,2003,67(4):041305. doi: 10.1103/PhysRevE.67.041305

    [17]

    VALVERDE J,QUINTANILLA M,CASTELLANOS A,et al. Experimental study on the dynamics of gas-fluidized beds[J]. Physical Review E,2003,67(1):016303. doi: 10.1103/PhysRevE.67.016303

    [18]

    WANG J,VAN DER HOEF M A,KUIPERS J. CFD study of the minimum bubbling velocity of Geldart A particles in gas-fluidized beds[J]. Chemical Engineering Science,2010,65(12):3772−3785. doi: 10.1016/j.ces.2010.03.023

    [19]

    TSINONTIDES S,JACKSON R. The mechanics of gas fluidized beds with an interval of stable fluidization[J]. Journal of Fluid Mechanics,1993,255:237−274. doi: 10.1017/S0022112093002472

    [20]

    SUNDARESAN S. Instabilities in fluidized beds[J]. Annual review of fluid mechanics,2003,35(1):63−88. doi: 10.1146/annurev.fluid.35.101101.161151

    [21]

    LOEZOS P N,COSTAMAGNA P,SUNDARESAN S. The role of contact stresses and wall friction on fluidization[J]. Chemical Engineering Science,2002,57(24):5123−5141. doi: 10.1016/S0009-2509(02)00421-9

    [22]

    DING Z,TIWARI S S,TYAGI M,et al. Computational fluid dynamic simulations of regular bubble patterns in pulsed fluidized beds using a two‐fluid model[J]. The Canadian Journal of Chemical Engineering,2022,100(2):405−422. doi: 10.1002/cjce.24082

    [23]

    KAGE H,IWASAKI N,YAMAGUCHI H,et al. Frequency analysis of pressure fluctuation in fluidized bed plenum[J]. Journal of Chemical Engineering of Japan,1991,24(1):76−81. doi: 10.1252/jcej.24.76

    [24]

    JOHNSSON F,ZIJERVELD R,SCHOUTEN J V,et al. Characterization of fluidization regimes by time-series analysis of pressure fluctuations[J]. International journal of multiphase flow,2000,26(4):663−715. doi: 10.1016/S0301-9322(99)00028-2

    [25]

    VERLOOP J,HEERTJES P. Periodic pressure fluctuations in fluidized beds[J]. Chemical Engineering Science,1974,29(4):1035−1042. doi: 10.1016/0009-2509(74)80096-5

    [26]

    ROY R,DAVIDSON J,TUPONOGOV V. The velocity of sound in fluidised beds[J]. Chemical Engineering Science,1990,45(11):3233−3245. doi: 10.1016/0009-2509(90)80216-2

    [27]

    AGHBASHLO M, SOTUDEH-GHAREBAGH R, ZARGHAMI R, et al. Measurement techniques to monitor and control fluidization quality in fluidized bed dryers: A review[J]. Drying Technology, 2014, 32(9): 1005-1051.

  • 期刊类型引用(13)

    1. 梁鹏,郝美鲁,秦锡壮. 低阶煤选择性热萃取及产物分析研究进展. 洁净煤技术. 2025(02): 30-42 . 百度学术
    2. 张博,姚少宇,孙宗盛,崔俸源. 高含水低品质煤干燥脱水提质技术进展. 洁净煤技术. 2024(01): 31-44 . 百度学术
    3. 宋瑞珍,杨晓阳,张鹏,王宝凤. 低阶煤和生物质水热碳化特性及水热炭功能化改性研究进展. 洁净煤技术. 2024(03): 72-85 . 百度学术
    4. 郑盼盼,杜玉杰,王永刚,林雄超,汪心想,耿耿,左孟迪. 内在矿物质对褐煤加氢热解过程中氮迁移的影响. 煤炭科学技术. 2024(05): 335-344 . 本站查看
    5. 宋瑞珍,陈云霄,杨晓阳,王嘉伟,王宝凤,赵瑞东. K_2CO_3活化低阶煤和污泥共水热炭制备多孔炭及其对CO_2和SO_2吸附性能. 洁净煤技术. 2024(07): 47-59 . 百度学术
    6. 向思羽,张朝晖,邢相栋,折媛,郭胜兰. 烧结烟气脱硫脱硝活性炭的研究进展. 钢铁研究学报. 2023(03): 233-246 . 百度学术
    7. 朱清耀,戴俊,贠菲菲,翟惠慧,张敏,冯立人. 微波照射后花岗岩动力响应及破碎特征. 采矿与岩层控制工程学报. 2022(01): 60-72 . 百度学术
    8. 肖卫锋,贺鑫杰. 高炉风口回旋区兰炭燃烧行为的数值模拟. 中国冶金. 2022(05): 86-92 . 百度学术
    9. 谢炙轩,张雷,郭建英,栗褒,杨志超,张素红,刘生玉. 阳-阴离子表面活性剂协同非极性油对低阶煤浮选的影响. 煤炭科学技术. 2022(09): 267-275 . 本站查看
    10. 王祥曦,郭柱,李显,胡振中,李致煜,李建,刘景梅,钟梅,罗光前,姚洪. 煤的热溶萃取残渣制备高比表活性炭研究. 工程热物理学报. 2022(10): 2565-2573 . 百度学术
    11. 曾红久. 低阶煤浮选研究现状与展望. 选煤技术. 2022(05): 7-13 . 百度学术
    12. 马立柱,黄平峰,庞家刚. 微波干燥机在三氧化二砷干燥中的应用. 有色冶金节能. 2021(02): 44-46+50 . 百度学术
    13. 脱凯用,刘淑琴,王莉萍,陈钢,马伟平,牛茂斐,刘欢,郭巍. 微波辅助铁催化华夏煤热解及煤焦结构演变特性. 煤炭学报. 2021(S2): 1030-1041 . 百度学术

    其他类型引用(11)

图(7)  /  表(3)
计量
  • 文章访问数:  83
  • HTML全文浏览量:  25
  • PDF下载量:  30
  • 被引次数: 24
出版历程
  • 收稿日期:  2022-09-26
  • 网络出版日期:  2023-05-14
  • 刊出日期:  2023-04-29

目录

    /

    返回文章
    返回