高级检索

厚松散层薄基岩下开采地表变形规律—以鲁南矿区为例

刘辉, 李玉, 苏丽娟, 朱晓峻, 张鹏飞, 姚明明, 王金正, 王庆伟, 司光亚

刘 辉,李 玉,苏丽娟,等. 厚松散层薄基岩下开采地表变形规律—以鲁南矿区为例[J]. 煤炭科学技术,2023,51(9):11−23. DOI: 10.13199/j.cnki.cst.2022-1451
引用本文: 刘 辉,李 玉,苏丽娟,等. 厚松散层薄基岩下开采地表变形规律—以鲁南矿区为例[J]. 煤炭科学技术,2023,51(9):11−23. DOI: 10.13199/j.cnki.cst.2022-1451
LIU Hui,LI Yu,SU Lijuan,et al. Surface deformation law of mining under thick loose layer and thin bedrock: taking the southern Shandong Mining Area as an example[J]. Coal Science and Technology,2023,51(9):11−23. DOI: 10.13199/j.cnki.cst.2022-1451
Citation: LIU Hui,LI Yu,SU Lijuan,et al. Surface deformation law of mining under thick loose layer and thin bedrock: taking the southern Shandong Mining Area as an example[J]. Coal Science and Technology,2023,51(9):11−23. DOI: 10.13199/j.cnki.cst.2022-1451

厚松散层薄基岩下开采地表变形规律—以鲁南矿区为例

基金项目: 

国家自然科学基金资助项目 (52174156, 51874005) ;安徽省高校协同创新资助项目 (GXXT-2020-055)

详细信息
    作者简介:

    刘辉: (1982—),男,山东肥城人,教授,博士生导师,博士。Tel:0551-63861026,E-mail:lhui99@aliyun.com

    通讯作者:

    苏丽娟: (1986—),女,山东枣庄人,副教授,博士。E-mail:58160242@qq.com

  • 中图分类号: TD325

Surface deformation law of mining under thick loose layer and thin bedrock: taking the southern Shandong Mining Area as an example

Funds: 

National Natural Science Foundation of China (52174156, 51874005) ; Anhui Province Collaborative Innovation Funding Project for Universities (GXXT-2020-055)

  • 摘要:

    我国东部厚松散层薄基岩矿区开采地表沉陷普遍具有下沉量大、移动范围广、稳沉时间长等特征。本文以鲁南矿区某煤矿为例,探讨了不同松散层与基岩厚度比条件下煤层开采的地表变形参数变化规律,在现场实测的基础上,采用FLAC3D数值模拟技术,建立不同松基比(0.25~5.00)条件下煤层开采的地表变形计算模型,研究了地表变形特征,分析了松基比对概率积分法参数的影响,并从开采沉陷的角度对厚松散层薄基岩条件进行了定量分析与探讨。研究表明:①在开采厚度相同条件下,当松基比不断增大时,地表变形量呈明显的先增大后减小特征,在松基比达到某一限值后,地表变形趋于稳定;②下沉系数、水平移动系数和主要影响角正切均随着松基比增大表现为先增大后减小的关系,松基比拐点分别为1.75、1.25和1.25;③松散层厚度在平均采深中所占的比例对移动角、边界角具有较大的影响,边界角、移动角随着松基比的增大逐渐减小。基于上述研究,提出将松基比为1.25~1.75作为厚松散层薄基岩条件的临界值,为我国东部典型厚松散层薄基岩矿区地表变形预计和开采沉陷灾害防控提供了理论基础。

    Abstract:

    The surface subsidence in the thick loose layer and thin bedrock mining area in the east of China has the characteristics of large subsidence value, wide movement range and long settling time. Taking a coal mine in Southern Shandong Mining Area as an example,this paper discusses the variation rules of coal seam mining surface deformation parameters under different loose layer and bedrock thickness ratio conditions, on the basis of field measurements, using FLAC3D, and establishes a surface deformation calculation model for coal seam mining under the conditions of different loose layer bedrock thickness ratios (0.25−5.00), studies the characteristics of surface deformation, analyzed the influence of ratio of loose layer thickness to bedrock thickness on the parameters of probability integral method, and quantitatively analyzed and discussed the conditions of thick loose layer and thin bedrock from the perspective of mining subsidence. Research shows: ①Under the same mining thickness conditions,when the ratio of loose layer thickness to bedrock thickness increases, the surface deformation amount obviously increases first and then decrease, when the ratio reaches a certain limit, the ground surface deformation tends to be stabilized; ②The subsidence coefficient, the horizontal movement coefficient and the tangent of the main influence angle all increase first and then decreases, and the inflection point is 1.75,1.25 and 1.25, respectively; ③The proportion of loose bed thickness in the average mining depth has great influence on the angle of draw and boundary angle. The boundary angle and the angle of draw gradually decrease with the increase of the ratio. Based on the above research, it is proposed that the ratio of 1.25−1.75 is the critical value for the condition of thick loose bedding and thin bedrock, which provides a theoretical basis and technical reference for the prediction of surface deformation and the prevention and control of mining subsidence disasters in typical thick loose layer thin bedrock mining areas in eastern China.

  • 图  1   覆岩结构

    Figure  1.   Overburden structure diagram

    图  2   地表移动观测站示意

    Figure  2.   Schematic diagram of a mobile surface observation station

    图  3   工作面走向下沉曲线

    Figure  3.   Working face sinking curve

    图  4   倾斜曲线

    Figure  4.   Slope curve

    图  5   曲率曲线

    Figure  5.   Curvature curve

    图  6   水平移动曲线

    Figure  6.   Horizontal shift curve

    图  7   水平变形曲线

    Figure  7.   Horizontal deformation curve

    图  8   数值模拟模型

    Figure  8.   Numerical simulation model

    图  9   不同松基比地表下沉曲线

    Figure  9.   Surface subsidence curves with different pine-to-basis ratio

    图  10   不同松基比地表水平移动曲线

    Figure  10.   Surface horizontal movement curves with different loose-to-base ratios

    图  11   下沉系数与松基比相关关系

    Figure  11.   Correlation between subsidence coefficient and loose-to-base ratio

    图  12   水平移动系数与松基比相关关系

    Figure  12.   Correlation between horizontal movement coefficient and loose-to-basic ratio

    图  13   松基比与主要影响角正切相关关系

    Figure  13.   Correlation between loose basis ratio and main influence angle tangent

    图  14   实测与模拟结果对比

    Figure  14.   Comparison between the actual measurement and simulation results

    图  15   覆岩垂直应力分布

    Figure  15.   Vertical stress distribution of overlying rock

    图  16   松散层与基岩相互作用关系

    Figure  16.   Interaction relationship between loose layer and bedrock

    表  1   煤岩体物理力学参数

    Table  1   Physical and mechanical parameters of coal and rock mass

    岩层厚度/m密度/(kg·m−3)体积模量/GPa剪切模量/GPa黏聚力/MPa抗拉强度/MPa内摩擦角/(°)
    松散层6382 0000.0570.650.120.0218
    中砂岩282 7509.352.303.522.6030
    4-细砂岩262 2509.262.253.502.5028
    4-泥岩362 5009.481.103.503.1038
    3-细砂岩262 2509.422.232.252.0030
    3-泥岩152 4509.201.602.603.3030
    2-细砂岩292 2709.582.502.502.2032
    2-泥岩662 4009.401.001.203.5036
    1-细砂岩172 3009.242.232.138.0030
    1-粉砂岩192 3009.122.302.259.1030
    31 5000.460.872.002.0025
    1-泥岩362 4009.162.121.252.5037
    粉砂岩172 3009.322.102.602.4032
    下载: 导出CSV

    表  2   模拟不同松基比的地表变形参数

    Table  2   Surface deformation parameters for different pine-to-basic ratios

    序号松基比K下沉系
    q
    水平移动
    系数b
    主要影响角
    正切tan β
    边界角
    δ0/(°)
    移动角
    δ0/(°)
    10.251.0790.461.1758.385.9
    20.501.1000.531.3557.981.8
    30.751.1430.541.3657.381.2
    41.001.1690.551.3857.080.1
    51.251.1830.561.4155.477.2
    61.501.1900.521.2455.276.9
    71.751.2030.501.1655.076.7
    82.001.1890.481.1654.976.6
    92.501.1890.471.1354.876.3
    103.001.1880.471.0853.876.1
    113.501.1880.461.0653.075.8
    124.001.1870.461.0452.275.7
    134.501.1870.461.0251.775.5
    145.001.1840.461.0151.275.5
    下载: 导出CSV

    表  3   不同矿区工作面地质采矿条件与地表移动参数

    Table  3   Geological mining conditions and surface movement parameters of working faces in different mining areas

    工作面煤层厚度/m采深/m松散层厚度/m基岩厚度/m松基比K下沉系数q水平移动系数b主要影响角正切tan β
    刘桥二矿6102.954191402790.50.960.441.45
    张庄矿3131-12.79648481.01.050.471.43
    淮南某矿12153.086423852571.51.130.561.62
    兖州鲍店煤矿5304-12.9289190992.01.350.411.60
    山东郭屯煤矿130837655821833.01.090.381.35
    下载: 导出CSV
  • [1]

    BEHERA K S,MISHRA P D,GHOSH N C,et al. Characterization of lead–zinc mill tailings, fly ash and their mixtures for paste backfilling in underground met alliferous mines[J]. Environmental Earth Sciences,2019,78(14):394.1−394.13.

    [2]

    NAZRUL I,SHAHADEV R,SUBRAMANYAM K V S,et al. Geochemistry and mineralogy of coal mine overburden (waste): A study towards their environmental implications[J]. Chemosphere,2021,274:129736.

    [3] 许家林. 煤矿绿色开采20年研究及进展[J]. 煤炭科学技术,2020,48(9):1−15.

    XU Jialin. Research and progress of coal mine green mining in 20 years[J]. Coal Science and Technology,2020,48(9):1−15.

    [4] 杨昊睿,宁树正,丁 恋,等. 新时期我国煤炭产业现状及对策研究[J]. 中国煤炭地质,2021,33(S1):44−48.

    YANG Haorui,NING Shuzheng,DING Lian,et al. Research on the current situation and countermeasures of my country's coal industry in the new era[J]. China Coal Geology,2021,33(S1):44−48.

    [5] 左建平,孙运江,钱鸣高. 厚松散层覆岩移动机理及“类双曲线”模型[J]. 煤炭学报,2017,42(6):1372−1379.

    ZUO Jianping,SUN Yunjiang,QIAN Minggao. Mechanism of overburden movement in thick loose layers and "quasi-hyperbolic" model[J]. Journal of China Coal Society,2017,42(6):1372−1379.

    [6] 张惠生,顾 伟. 厚松散层浅部开采地表移动规律数值模拟研究[J]. 能源与节能,2014(3):131−134,165.

    ZHANG Huisheng,GU Wei. Numerical simulation of surface movement law in shallow mining of thick loose layers[J]. Energy and Energy Conservation,2014(3):131−134,165.

    [7] 蒯 洋. 厚松散层下重复开采地表变形参数研究[D]. 合肥: 安徽大学, 2018.

    KUAI Yang. Research on surface deformation parameters of repeated mining under thick loose layers [D]. Hefei: Anhui University, 2018.

    [8]

    HU Haifeng,LIAN Xugang. Subsidence rules of underground coal mines for different soil layer thickness: Lu’an Coal Base as an example, China[J]. International Journal of Coal Science & Technology,2015,2(3):178−185.

    [9]

    ZHANG G B,ZHANG W Q,WANG C H,et al. Mining thick coal seams under thin bedrock-deformation and failure of overlying strata and alluvium[J]. Geotechnical and Geological Engineering,2016,34:1553−1563. doi: 10.1007/s10706-016-0061-3

    [10] 余学祥,秦永洋,孙兴平,等. 顾桥煤矿11-2煤综采面地表移动变形基本特征分析[J]. 矿山测量,2009(6):8−12.

    YU Xuexiang,QIN Yongyang,SUN Xingping,et al. Analysis of the basic characteristics of surface movement and deformation of the 11-2 fully mechanized coal mining face in Guqiao Coal Mine[J]. Mine Survey,2009(6):8−12.

    [11] 郭玉芳,孟凡迪,陈俊杰. 厚松散层开采条件下地表沉陷数值模拟分析[J]. 煤炭工程,2014,46(6):103−105.

    GUO Yufang,MENG Fandi,CHEN Junjie. Numerical simulation analysis of surface subsidence under thick loose layer mining conditions[J]. Coal Engineering,2014,46(6):103−105.

    [12] 李青海,张存智,李开鑫,等. 巨厚松散层下开采地表下沉的影响因素分析[J]. 煤炭科学技术,2021,49(11):191−199.

    LI Qinghai,ZHANG Cunzhi,LI Kaixin,et al. Analysis of influencing factors of surface subsidence in mining under huge thick loose layers[J]. Coal Science and Technology,2021,49(11):191−199.

    [13] 杨玉亮,徐祝贺,韩 浩. 浅埋深薄基岩大采高综采工作面开切眼支护技术[J]. 煤炭科学技术,2020,48(12):51−60.

    YANG Yuliang,XU Zhuhe,HAN Hao. Shallow burial, deep thin bedrock and large mining height fully mechanized mining face supporting technology[J]. Coal Science and Technology,2020,48(12):51−60.

    [14] 孔素丽,韩永斌. 厚松散层大采深多工作面接续开采地表移动规律研究[J]. 矿山测量,2021,49(5):12−16.

    KONG Suli,HAN Yongbin. Research on the law of surface movement in continuous mining of thick loose layers with large mining depth and multiple working faces[J]. Mining Survey,2021,49(5):12−16.

    [15] 蒯 洋,刘 辉,朱晓峻,等. 厚松散层下多煤层重复开采地表移动规律[J]. 煤田地质与勘探,2018,46(2):130−136.

    KUAI Yang,LIU Hui,ZHU Xiaojun,et al. Surface movement law of repeated mining of multiple coal seams under thick loose layers[J]. Coalfield Geology and Exploration,2018,46(2):130−136.

    [16] 杨俊哲,吴作启,李宏杰,等. 浅埋薄基岩工作面溃水溃砂模拟试验及影响因素分析[J]. 煤炭科学技术,2021,49(10):1−8.

    YANG Junzhe,WU Zuoqi,LI Hongjie,et al. Simulation test of water and sand inrush in shallow-buried thin bedrock working face and analysis of influencing factors[J]. Coal Science and Technology,2021,49(10):1−8.

    [17] 周大伟. 煤矿开采沉陷中岩土体的协同机理及预测[D]. 徐州: 中国矿业大学, 2014.

    ZHOU Dawei. Synergistic mechanism and prediction of rock and soil in coal mining subsidence[D]. Xuzhou: China University of Mining and Technology, 2014.

    [18] 顾 伟. 厚松散层下开采覆岩及地表移动规律研究[D]. 徐州: 中国矿业大学, 2014.

    GU Wei. Research on overburden rock and surface movement law under thick loose layer mining [D]. Xuzhou: China University of Mining and Technology, 2014.

    [19] 刘 辉,左建宇,苏丽娟,等. 巨厚含水松散层下开采地表移动变形规律研究[J]. 煤炭科学技术,2022,50(5):49−56.

    LIU Hui,ZUO Jianyu,SU Lijuan,et al. Research on the law of surface movement and deformation in mining under huge water-bearing loose layers[J]. Coal Science and Technology,2022,50(5):49−56.

    [20] 周婷婷,苏丽娟,刘 辉,等. 神东矿区地表移动参数变化规律及影响机制[J]. 煤田地质与勘探,2021,49(3):189−198.

    ZHOU Tingting,SU Lijuan,LIU Hui,et al. Variation law and influence mechanism of surface movement parameters in Shendong mining area[J]. Coalfield Geology and Exploration,2021,49(3):189−198.

    [21] 汪 锋,陈绍杰,许家林,等. 基于松散层拱结构理论的岩层控制研究[J]. 煤炭科学技术,2020,48(9):130−138.

    WANG Feng,CHEN Shaojie,XU Jialin,et al. Research on rock formation control based on loose layer arch structure theory[J]. Coal Science and Technology,2020,48(9):130−138.

    [22] 闵飞虎,向必伟,刘 辉,等. 采动影响下逆断层活化规律的数值模拟[J]. 煤田地质与勘探,2019,47(4):144−152.

    MIN Feihu,XIANG Biwei,LIU Hui,et al. Numerical simulation of the activation law of reverse faults under the influence of mining[J]. Coalfield Geology and Exploration,2019,47(4):144−152.

    [23] 张玉军,宋业杰,樊振丽,等. 鄂尔多斯盆地侏罗系煤田保水开采技术与应用[J]. 煤炭科学技术,2021,49(4):159−168.

    ZHANG Yujun,SONG Yejie,FAN Zhenli,et al. Water conservation mining technology and application of Jurassic coalfield in Ordos Basin[J]. Coal Science and Technology,2021,49(4):159−168.

    [24] 翟新献,刘勤裕,于春生,等. 巨厚松散层薄基岩下煤层开采矿压显现规律研究[J]. 煤炭科技,2022,43(1):1−8.

    ZHAI Xinxian,LIU Qinyu,YU Chunsheng,et al. Research on the appearance of mining pressure in coal seams under huge thick loose layers and thin bedrock[J]. Coal Science and Technology,2022,43(1):1−8.

    [25] 吕 超. 赵固一矿厚煤层开采薄基岩变形移动规律研究[D]. 焦作: 河南理工大学, 2018.

    LYU Chao. Study on deformation and movement law of thin bedrock in thick coal seam mining in Zhaogu No.1 Mine [D]. Jiaozuo: Henan University of Technology, 2018.

    [26] 陈绍杰,祝伟豪,汪 锋,等. 建筑荷载下浅埋长壁老采空区地表移动变形规律与机理[J]. 煤炭学报,2022,47(12):4403−4416.

    CHEN Shaojie,ZHU Weihao,WANG Feng,et al. Law and mechanism of surface movement and deformation in shallow buried longwall old goaf under construction load[J]. Journal of China Coal Society,2022,47(12):4403−4416.

    [27] 李 林. 麻家梁矿区地表变形监测及规律应用研究[D]. 徐州: 中国矿业大学, 2019.

    LI Lin. Research on surface deformation monitoring and law application in Majialiang mining area [D]. Xuzhou: China University of Mining and Technology, 2019.

    [28] 易四海,朱 伟,刘德民. 薄基岩厚松散层条件覆岩破坏规律研究[J]. 煤炭工程,2019,51(11):86−91.

    YI Sihai,ZHU Wei,LIU Demin. Study on the failure law of overlying rock under the condition of thin bedrock and thick loose layer[J]. Coal Engineering,2019,51(11):86−91.

    [29] 程 桦,张亮亮,姚直书,等. 厚松散层薄基岩非对称开采井筒偏斜机理[J]. 煤炭学报,2022,47(1):102−114.

    CHENG Hua,ZHANG Liangliang,YAO Zhishu,et al. Wellbore deflection mechanism in asymmetric mining of thick loose layers and thin bedrock[J]. Journal of China Coal Society,2022,47(1):102−114.

  • 期刊类型引用(4)

    1. 陆志艳,陈雯轩,孙汪师诒,卓宁泽,魏潇,廖丽芳,许庆利,吴诗勇. Ce-Mn/ZrO_2复合催化剂的制备及其固硫性能. 应用化学. 2024(06): 839-850 . 百度学术
    2. 林建功,张孝禹,惠吉成,朱书骏,朱建国. 煤矸石与气化飞灰的热重-质谱混燃机理. 煤炭学报. 2024(11): 4634-4645 . 百度学术
    3. 李冠杰,刘丹阳,夏宏图,雒锋. 污泥与油页岩半焦制备陶粒滤料的研究. 粉煤灰综合利用. 2023(04): 59-63+79 . 百度学术
    4. 陈春瑞,张圆圆,赵沛祯,赵文鑫,王鹏程,姜平,杨凤玲. 钙基脱硫剂对污泥流变特性的影响. 洁净煤技术. 2023(08): 124-131 . 百度学术

    其他类型引用(10)

图(16)  /  表(3)
计量
  • 文章访问数:  179
  • HTML全文浏览量:  35
  • PDF下载量:  51
  • 被引次数: 14
出版历程
  • 收稿日期:  2022-11-11
  • 网络出版日期:  2023-07-10
  • 刊出日期:  2023-09-18

目录

    /

    返回文章
    返回