高级检索

煤储层水文地质特征及其煤层气开发意义研究综述

赵馨悦, 韦波, 袁亮, 葛燕燕, 胡永, 李鑫, 王毛毛, 贾超, 玛依拉·艾山, 田继军

赵馨悦,韦 波,袁 亮,等. 煤储层水文地质特征及其煤层气开发意义研究综述[J]. 煤炭科学技术,2023,51(4):105−117

. DOI: 10.13199/j.cnki.cst.2022-1367
引用本文:

赵馨悦,韦 波,袁 亮,等. 煤储层水文地质特征及其煤层气开发意义研究综述[J]. 煤炭科学技术,2023,51(4):105−117

. DOI: 10.13199/j.cnki.cst.2022-1367

ZHAO Xinyue,WEI Bo,YUAN Liang,et al. Hydrological characters of coal reservoir and their significances on coalbed methane development: A review[J]. Coal Science and Technology,2023,51(4):105−117

. DOI: 10.13199/j.cnki.cst.2022-1367
Citation:

ZHAO Xinyue,WEI Bo,YUAN Liang,et al. Hydrological characters of coal reservoir and their significances on coalbed methane development: A review[J]. Coal Science and Technology,2023,51(4):105−117

. DOI: 10.13199/j.cnki.cst.2022-1367

煤储层水文地质特征及其煤层气开发意义研究综述

基金项目: 

国家自然科学基金资助项目(42062012)

详细信息
    作者简介:

    赵馨悦: (1996—),女,新疆克拉玛依人,硕士研究生。E-mail: XJUxinyue28@163.com

    通讯作者:

    李鑫: (1990—),男,山西晋城人,副教授,博士研究生。E-mail: lixinwaxj@xju.edu.cn

  • 中图分类号: P592

Hydrological characters of coal reservoir and their significances on coalbed methane development: A review

Funds: 

National Natural Science Foundation of China (42062012)

  • 摘要:

    我国煤层气资源开发具有广阔的前景,煤储层水的演化过程及其在煤层气开发过程中的运移规律对煤层气的富集和产能有重要影响。文章阐明了煤储层水的组成、性质、来源及同位素年代学研究进展;分析了煤储层水运移过程中压降漏斗的扩展规律和井间干扰机理,探讨了煤储层水运移过程中可能造成的储层伤害,并根据煤储层水的演化过程及其在煤层气开发中的运移规律,对煤层气开发提出几点建议。研究总结表明:①煤储层水来源于原始沉积水、渗入水、深成水以及成岩水,原始沉积水的钠氯系数 (rNa+/rCl)< 0.5,肖勒系数IBE>0.129,矿化度>10 000 mg/L;渗入水则与原始沉积水相反,深层水的δD介于−80‰~+40‰,δ18O介于+7‰~+9.5‰,成岩水δD介于−65‰~−20‰,δ18O介于+5‰~+25‰;②煤储层水地球化学特征对煤层气的富集、开发有重要指示意义,煤层气高含气区通常具有钠氯系数、脱硫系数、镁钙系数小,变质程度高的特点,低含气区反之;③煤储层水运移过程中形成的压降漏斗以及井间干扰有利于提高煤层气井产量,我国煤层气井大多采用矩形或菱形井网部署,最优井距通常在250~400 m;④煤储层水运移会引起水锁伤害、水敏伤害及速敏伤害等,通过实施合理排采强度、开展井网优化以及向入井流体中加入防水锁剂和煤粉分散剂方式等降低储层伤害。研究成果可为提高我国煤层气勘探效率和产量提供一定的理论依据。

    Abstract:

    The development of coalbed methane resources in China has broad prospects, and the evolution process of coalbed water and its transportation law has important impacts on coalbed methane production capacity. This paper clarifies the composition, properties, sources and isotopic chronology of coal reservoir water, analyzes the expansion law of the pressure drop funnel and the inter-well interference mechanism during the water transport process, discusses the reservoir damage that may be caused by the water transport during drainage, and puts forward several suggestions for coalbed methane development according to the evolution of coal reservoir water and its transport and migration law during production. The results show that: (1) coal reservoir water is originated from primary sedimentary water, infiltration water, deep-forming water and diagenetic water, and the sodium-chlorine coefficient (rNa+/rCl), Scholler coefficient (IBE), and mineralization degree of the original sedimentary water is<0.5, >0.129, and >10000 mg/L, respectively; corresponding values of infiltration water are the opposite of these relations; theδD andδ18O of deep-forming water is ranged from −80‰ to+40‰ and +7‰ to +9.5 ‰, respectively; theδD andδ18O of diagenetic water is ranged from −65‰ to −20‰ and +5‰ to+25‰, respectively; (2) the geochemical characteristics of coal reservoir water have important indicative significances for the enrichment and development of coalbed methane, and the high gas-containing areas of coalbed methane usually have the characteristics of low sodium-chlorine coefficient, low desulfurization coefficient, low magnesium-calcium coefficient, and high degree of metamorphism, correspondingly, the low gas-containing areas have the opposite characters; (3) the pressure drop funnel propagation during coal reservoir water transport and migration and the interference between wells are conducive to improve the coalbed methane production, and most of the coalbed methane wells in China are deployed by rectangular or diamond-shaped well networks, and the optimal well space is usually ranged between 250m and 400m; (4) the water transport of coal reservoirs can cause pulverized coal to block the formation, water lock damage, water sensitive damage, and velocity sensitive damage. To reduce reservoir damage, implementing reasonable drainage strength, optimizing the well network, and adding waterproof locking agent and pulverized coal dispersant to the incoming fluid are suggested. The research results can provide a certain theoretical basis for improving the exploration efficiency and coalbed methane yield in China.

  • 低透气性煤层瓦斯抽采是影响煤矿安全高效生产的主要障碍[1],增加煤层透气性是解决低透气性煤层瓦斯抽采难题的关键问题[2]。水力化措施(包括水力冲孔[3-4]、水力割缝[5-6]、水力压裂[7-8]等)是增加低渗煤层透气性的有效途径。然而,煤矿很多情况下需要用到下向孔水力化措施:顶抽巷预抽煤层瓦斯,石门揭煤下向孔抽采瓦斯,多煤层开采时,利用煤层间的岩巷抽采下部煤层瓦斯。下向孔水力化增透技术孔内水渣难以排出的问题已经得到改善[9-10]。然而,传统下向孔淹没水射流仍存在打击力性能差、环境适用性差等问题。

    自吸环空流体式自激脉冲射流(下文简称自吸脉冲射流)利用射流卷吸作用、自激振荡腔内反馈负压区及环空流体液柱压力,无需外加装置可以产生优于自激脉冲射流的脉动效果[11-13],为增强淹没水射流打击力提供了新思路。当前国内外学者对自激脉冲射流喷嘴的结构参数、运行参数和脉冲频率特性与打击力性能的关系进行了大量的研究。庞惠文等[14]对自激脉冲射流喷嘴的结构参数进行数值模拟,研究了不同结构参数对喷嘴打击力性能的影响,结果表明进出口比对射流压力幅值影响最大。王健等[15]对自激脉冲射流喷嘴进行了试验设计和数据分析,研究了喷嘴结构对射流打击力性能的影响规律,得出了实际工程中典型尺寸喷嘴和打击力性能的关系。赵礼等[16]对自激脉冲射流喷嘴进行了试验研究,分析了结构参数以及运行参数对射流打击力性能的影响规律,得出了不同结构参数下所对应的喷嘴最优参数。葛兆龙等[17]运用数值模拟和粒子成像测试实验,分析了腔长等结构参数对自激脉冲射流打击力性能的影响规律,建立了自激振荡喷嘴的设计准则。于晓龙等[18]运用正交小波变换和经验模态分解对射流打击力进行分解,发现围压和吸气对射流瞬时打击力时均值和脉动幅值影响较大。刘新阳等[19]对水下自激吸气式射流装置进行了冲击试验,运用第二代小波变换和Wigner-Ville分布相结合的方法提取了冲击力时频特性,结果表明围压、靶距和吸气对频带能量比影响较大。现阶段主要通过改变其内部结构和相关运行参数研究自激脉冲射流的冲击性能,但很少涉及到运用时频分析来研究不同参数对自激脉冲射流打击力能量时频分布的影响规律。

    基于上述背景,笔者为研究淹没条件下自吸脉冲射流的打击力时频特性,利用自制的脉冲射流高频打击力测试装置,开展了不同腔长、工作压力以及围压下的自吸脉冲射流打击力试验并采集脉动压力信号。以脉动压力信号为基础,采用Savitzky-Golay平滑后小波变换,并运用Wigner-Ville时频分布提取打击力时频特性,分析了腔长、工作压力以及围压对射流打击力能量时频分布和脉冲效果的影响规律,并对比分析了自吸脉冲射流、自激脉冲射流和普通射流的脉冲效果。

    依据团队前期研究成果优选出自激脉冲喷嘴结构参数[20],其几何结构如图1所示。该装置由上喷嘴、下喷嘴、腔体和自吸孔组成。上喷嘴采用圆锥收敛型喷嘴,圆锥收敛角α1=14°,收缩段l0=9 mm,直管段l1=5 mm,总长度为14 mm,出口直径d1=3 mm。自吸孔直径d3=4.5 mm,自吸孔深度即壁厚l3=7.5 mm。下喷嘴选取锥截面形,碰撞壁收敛角α2=120°,直径d2=5 mm,出口结构采用直线型喷嘴,直管段长度l2=9 mm。

    图  1  射流喷嘴几何结构示意
    Figure  1.  Schematic diagram of jet nozzle geometry

    试验系统采用自行研制的脉冲射流高频打击力测试系统,试验系统如图2所示。其中,自行研制的透明打击力测试装置能够较好的观察射流冲击靶盘过程,且通过消除气垫效应很好得解决了压力传导衰减大和传导时间延迟的问题[21]

    图  2  脉冲射流高频打击力测试系统
    Figure  2.  Pulsed jet high frequency strike force test system

    在此过程中,水通过高压栓塞泵加压,经高压管路泵送至喷嘴,当具有一定速度的连续射流经上喷嘴流入亥姆赫兹型振荡腔室后,射流在腔内碰撞与摩擦形成不同尺度的涡漩,经扰动放大后自激振荡腔中心两侧区域会形成一定的负压区,在腔室的上游区域由于紊动射流强烈的卷吸作用,以及在负压区与喷嘴外部环空流体液柱压力的作用下,环空流体被吸入到自激振荡腔内,与主射流混合形成自吸脉冲射流并持续冲击靶盘。测试系统配有1 MHz的高频采集卡和1000 Hz的压力传感器,能够较为准确的获取高频脉冲射流的脉冲压力信号。试验系统可调节射流工作压力范围0~35 MPa,可进行不同射流参数条件下的水射流打击力试验,试验装置如图3所示。

    图  3  打击力测试装置
    Figure  3.  Percussion test setup

    为分析不同射流参数对自吸脉冲射流打击力性能的影响,本文基于下向水射流增透技术生产实践选择合适的试验参数分别开展不同腔长、工作压力以及围压下的自吸脉冲射流打击力测试。水力冲孔压力通常在5~20 MPa,适用于坚固性系数较小的软煤[22],射流的工作压力取值范围为2~12 MPa;煤矿井下下向钻孔垂距一般为10~20 m,围压根据下向钻孔垂距进行取值,围压取值为0.1 MPa即表示10 m垂距。试验方案见表1表3

    表  1  不同腔长下的打击力测试方案
    Table  1.  Striking force test program at different cavity lengths
    腔长/mm 工作压力/MPa 围压/MPa 冲击靶距/mm
    15 10 0.1 10
    18 10 0.1 10
    21 10 0.1 10
    24 10 0.1 10
    27 10 0.1 10
    18.6 10 0.1 10
    下载: 导出CSV 
    | 显示表格
    表  2  不同工作压力下的打击力测试方案
    Table  2.  Testing scheme of striking force at different working pressures
    腔长/mm工作压力/MPa围压/MPa冲击靶距/mm
    18.620.110
    18.650.110
    18.680.110
    18.6100.110
    18.6120.110
    下载: 导出CSV 
    | 显示表格
    表  3  不同围压下的打击力测试方案
    Table  3.  Testing scheme of striking force at different enclosure pressures
    腔长/mm工作压力/MPa围压/MPa冲击靶距/mm
    18.610010
    18.6100.110
    18.6100.210
    18.6100.310
    18.6100.410
    下载: 导出CSV 
    | 显示表格

    自激脉冲射流的打击力特性与压力信号的时频特性直接相关,因此通过时频分析方法获取自激脉冲射流的瞬时特性,对研究如何提升射流打击力效果有重要意义。经过Savitzky-Golay平滑处理后,压力信号低频部分的逼近信号更加接近于真实信号,去噪效果也更加显著。在此基础上提升小波变换可以显示信号的局部时频域特征,利于观察压力信号在不同频带上的细节。

    图4为自吸脉冲射流在工作压力10 MPa、围压0.1 MPa时采集到的出口处原始打击力脉动压力信号时域图和时频图,从图中可以发现信号较为杂乱,没有明显的时域波形,高频杂峰过多。将脉动压力信号经S-G平滑后得到的时域图和频域图如图5所示,经过去噪处理后,250~500 Hz的部分噪声被滤除,打击力脉动压力信号的主频和振幅也得以完整保留,较去噪前几乎没有损坏,进一步证明了S-G平滑方法具有良好的降噪滤波功能。

    图  4  原始打击力信号时域图与频域图
    Figure  4.  Time-domain and frequency-domain plots of the original strike force signal
    图  5  经过S-G平滑滤波后的时域图与频域图
    Figure  5.  Time-domain and frequency-domain plots after S-G smoothing filtering

    小波分解实际上是将原始压力信号分解为低频信号和高频信号,然后再对低频信号进行分解,以此类推,以此实现打击力脉动压力信号的逐层分解。观察原始打击力频域图发现其主频在30 Hz左右,限于篇幅,下文仅展示射流打击力脉动压力信号低频部分重构图。

    图6可知,打击力脉动压力信号分解到第1层和第2层时,时域图波形中还存在较多的锯齿状毛刺,说明打击力脉动压力信号还不够光滑[23];分解到第3层和第4层时,时域图波形中的锯齿状毛刺基本消失,其低频重构时域图中的脉动波形已经足够平滑。但是第4层分解的低频脉动压力信号的时域图波形明显存在失真,最为理想的分解层数是第3层。

    图  6  经过S-G平滑后提升小波分解的低频部分时域图
    Figure  6.  Time-domain plot of the low-frequency part of the boosted wavelet decomposition after S-G smoothing

    与小波分析方法不同,Wigner-Ville分布能够在三维曲面坐标轴上表征脉动压力信号在某时刻的能量和幅值。所以,打击力脉动压力信号均采用S-G平滑后提升小波分解到第3层后并重构信号进行去噪处理得时域曲线和频谱曲线,结合平滑伪Wigner-Ville时频分布,本文对射流脉动压力信号进行了多角度的时频特性分析。

    根据试验方案,在围压为0.1 MPa、工作压力为10 MPa、靶距为10 mm的试验条件下,开展不同腔长下的自吸脉冲射流打击力试验,图7为高频打击力测试系统在不同腔长条件下测得的原始打击力信号。

    图  7  不同腔长下的打击力原始信号时域图
    Figure  7.  Time-domain plots of the raw signals of the striking force for different cavity lengths

    图8为自吸脉冲射流在不同腔长下采用平滑伪Winger-Ville分析的打击力时频图。从时频图可以看出,当L=15 mm时,射流能量分布三维曲面在0~1 s内出现1~2处较为明显的波峰,但是频带出现了多处跳跃,能量分布相对紊乱,此腔长下的射流脉冲效果不明显;当L=18 mm时,射流能量时频集中分布在30~50 Hz内的频带,能量分布波动性明显处的能量相对较高,脉冲效果得到了一定的提高;当L=21、24、27 mm时,打击力时频图频带成分复杂,射流能量较小且分布不均匀,没有确定的频带;当L=18.6 mm时,可以明显看出射流能量集中在30~50 Hz的频带,能量时频分布三维曲面存在5~6处明显的波峰,能量密度最大,此时对应的打击力达到峰值,脉冲效果最佳。综合以上分析,在该试验条件下,当L=18.6 mm时自吸脉冲射流的打击力性能和脉冲效果最好。

    图  8  不同腔长下打击力脉动信号时频图
    Figure  8.  Time-frequency diagram of the pulsation signal of the striking force at different cavity lengths

    为了研究不同腔长下射流打击力脉动信号频带能量谱图,对打击力脉动信号频带进行提升小波分解,并得到分解后每一层的实际能量,图9为不同腔长下的射流打击力脉动信号频带能量。

    图  9  不同腔长下的打击力脉动信号频带能量
    Figure  9.  Frequency band energy maps of percussive force pulsation signals at different cavity lengths

    分析图9可知,不同腔长下的射流打击力频带能量变化规律大致相同,射流能量主要集中于第四层频带。当L=18.6 mm时实际总能量最大,分别是腔长L=18 mm和L=21 mm的1.37倍和1.48倍。

    图10表示的是射流打击力脉动信号的打击力、脉动幅值、频率与能量随着腔长变化的规律。由图10可知,在其他射流参数相同的条件下,随着腔长的增大,射流主频频率减低,但仍集中在30~50 Hz范围内,打击力、脉动幅值以及能量值都出现先增大后减小的趋势。当腔长为L=18.6 mm时,打击力、脉动幅值以及能量均达到最大值,射流脉动频率也达到较大值。分析以上现象,当腔长在合适范围内,腔体内会形成合适的负压区,且反馈扰动成分单一,卷吸环空流体叠加激励增强,形成较好的振荡效果,打击力、脉动幅值、总能量都较大。过短的腔长会影响大尺度涡漩结构的产生,进而影响水射流的脉冲效果,最终减弱自吸脉冲射流的打击力、脉动幅值和射流能量;当腔长过大时,射流与下喷嘴壁面发生碰撞产生向腔室上游传播的压力脉冲信号减弱,腔室内形成的大尺度涡漩结构不完全,导致自吸脉冲射流的打击力、脉动幅值和射流能量减小。

    图  10  腔长对射流打击力性能的影响
    Figure  10.  Effect of cavity length on jet striking force performance

    根据试验方案,在腔长为18.6 mm、围压为0.1 MPa、靶距为10 mm的试验条件下,进行不同工作压力下的自吸脉冲射流打击力试验,图11为高频打击力测试系统在不同工作压力条件下所测的原始打击力信号。

    图  11  不同工作压力下的打击力原始信号时域图
    Figure  11.  Time-domain plots of the raw signals of the striking force at different operating pressures

    图12为自吸脉冲射流在不同工作压力下采用平滑伪Winger-Ville分析的打击力时频图。由图可知,当P0≤5 MPa时,射流能量时频分布三维曲面波峰不明显;当P0>5 MPa时,随着工作压力的增加,射流能量时频分布三维曲面存在多处明显波峰,射流脉冲效果明显。当P0≤5 MPa时,射流主频主要分布在30~50 Hz,但射流能量时频分布杂乱,频率成分较杂,射流脉冲效果较差;当5 MPa<P0≤12 MPa时,射流主频主要分布在30~50 Hz,打击力压力脉动分布较为集中,频率成分较为简单,自吸脉冲射流打击力能量时频分布三维曲面存在明显波峰,射流脉冲效果较好。

    图  12  不同工作压力下打击力脉动信号时频图
    Figure  12.  Time-frequency diagrams of the pulsation signal of the striking force at different operating pressures

    为了研究不同工作压力下射流打击力脉动信号频带能量谱图,对打击力脉动信号频带进行提升小波分解,并得到分解后每一层的实际能量,图13为不同工作压力下射流打击力脉动信号频带能量图。

    图  13  不同工作压力下射流打击力脉动信号频带能量
    Figure  13.  Frequency band energy map of the pulsation signal of the jet striking force at different operating pressures

    分析图13可知,随着工作压力的增大,射流的总能量也随着增大。总体来看,当工作压力P0<5 MPa时,随着工作压力的增大射流能量的增加较为缓慢,而当工作压力P0>5 MPa时,随着工作压力的增大射流能量得到大幅度提升,增幅在60%~70%左右。

    图14为工作压力对射流打击力、脉动幅值、频率以及能量的影响规律,由图14可知,随着工作压力的增大自吸脉冲射流的打击力、脉动幅值、频率以及实际总能量都逐渐增大。这是因为射流从上喷嘴进入腔室内会产生卷吸作用,主射流在腔室内不断产生振荡并与下喷嘴壁面发生碰撞进而产生压力脉冲,并在腔室内形成大尺度涡漩结构,形成自激脉冲射流。射流工作压力的增大,会增加主射流的卷吸作用,促进大尺度涡漩结构的形成,使射流脉冲效果更好。工作压力的增大会使高速射流的能量变大,增强了腔内射流的卷吸效果,促进卷吸流体与脉冲主射流的掺混作用,从而使装置的射流能量增加,脉动幅值也相应增大。

    图  14  工作压力对射流打击力性能的影响
    Figure  14.  Effect of working pressure on the performance of jet striking force

    根据试验方案,在腔长为18.6 mm、工作压力为10 MPa、靶距为10 mm的试验条件下,开展不同围压下的自吸脉冲射流打击力试验,图15为高频打击力测试系统在不同围压条件下所测的原始打击力信号。

    图  15  不同围压下的打击力原始信号时域
    Figure  15.  Time-domain plots of the raw signals of the striking force under different enclosure pressures

    对不同围压下的射流打击力脉动信号结合平滑伪Wigner-Ville分布,得到如图16所示的时频图。由图16可知,当围压Pw≤0.1 MPa时,射流能量时频分布存在多处明显的能量峰值,能量峰值与相应的时域图所处的最大射流打击力处相对应,脉冲现象明显且较为稳定,主频集中于30~50 Hz的频带;当围压Pw>0.1 MPa时,随着围压的增加,射流打击力能量时频分布三维曲面逐渐平缓,射流脉动峰值能量大幅减少,能量密度时频分布不均匀,射流能量三维曲面波峰非常不明显,与之前较小围压相比,主频带能量大幅减小,脉冲效果不稳定。

    图  16  不同围压下打击力脉动信号时频
    Figure  16.  Time-frequency diagram of pulsation signal of striking force under different enclosure pressures

    为了研究不同围压下的射流打击力脉动信号频带能量谱图,对打击力脉动信号频带进行提升小波分解,并得到分解后每一层的实际能量,图17为不同围压下射流打击力脉动信号频带能量图。

    图  17  不同围压下射流打击力脉动信号频带能量
    Figure  17.  Frequency band energy maps of pulsation signals of jet striking force at different enclosure pressures

    分析图17可知,射流能量随着围压的增大而减小,当围压Pw从0 MPa增至0.1 MPa时,射流能量减小的幅度为10.68%,当围压Pw>0.1 MPa时,射流能量减小的幅度大大升高,围压从0.1 MPa增至0.4 MPa,射流能量减小的幅度在46.49%~59.76%之间。射流能量在围压Pw≤0.1 MPa时小幅度减小,减小的幅度为2.09%,在围压Pw>0.1 MPa时大幅度减小,减小幅度在47.14%~62.96%。

    图18为不同围压对打击力性能的影响规律。由图18可知,随着围压的增大,打击力、脉动幅值以及实际总能量都大幅减小,这是因为随着围压的增大,调制器出口处的滞止压力逐渐增大,造成卷吸流量减小,卷吸流体在腔体内部与脉冲主射流的掺混效果不佳,水射流的能量损耗增加,水射流在调制器出口处的轴向速度大幅衰减,从而导致射流脉冲效果不佳。射流主频带为30~50 Hz,主频随着围压的增加呈现出先减小后增大的趋势。

    图  18  不同围压对打击力性能的影响
    Figure  18.  Effect of different enclosure pressures on the performance of the striking force

    为了更直观地了解自吸脉冲射流的优越之处,在工作压力为10 MPa、靶距为0 mm、围压为0.1 MPa的试验条件下,开展自吸脉冲射流、自激脉冲射流以及普通射流对比试验,自激脉冲射流喷嘴不含自吸孔,结构参数与自吸脉冲射流一致,普通射流喷嘴为自吸脉冲射流上喷嘴。图19为不同射流在该试验条件下测得的原始打击力信号。

    图  19  打击力时域变化对比
    Figure  19.  Comparison of time-domain variation of striking force

    为了进一步分析环空流体对自激脉冲射流的强化作用,提取不同射流的打击力脉动峰值和脉动幅值进行对比,如表4所示。其中脉动峰值和脉动幅值可以表示脉动压力信号的脉动效果[24],在数据处理时,将采集到的脉动压力信号总体样本划分为若干子区间,所有子区间内包含完整的周期,进而求得每个子区间的最大值和最小值,再将所有子区间的最大值和最小值取平均值,得出整个样本的脉动峰值和脉动幅值。

    表  4  不同射流的打击力脉动特征值
    Table  4.  Characteristic values of striking force pulsation for different jets
    类型 脉动峰值/MPa 脉动幅值/MPa
    自吸脉冲射流 12.48 10.61
    自激脉冲射流 10.80 9.13
    普通射流 9.95 3.88
    下载: 导出CSV 
    | 显示表格

    表4可知,在围压为0.1 MPa的试验条件下,自吸脉冲射流的脉动峰值和脉动幅值是自激脉冲射流的1.15倍和1.16倍,是普通射流的1.25倍和2.7倍。表明了自吸环空流体式自激脉冲射流在淹没条件下能够持续产生较好的脉冲射流,具有良好的脉冲特性。其原因可能是在一定的围压范围内,随着围压的增大,自吸脉冲射流喷嘴外环空流体液柱压力增大,环空流体在液柱压力作用下通过自吸孔进入腔室与主射流混合,增加了主射流的质量,从而增强了出口射流的动量和冲击作用,环空流体的激励作用大于围压对射流能量的抑制作用,使射流脉冲效果更好。

    本文研究了不同腔长、工作压力以及围压等关键参数对射流能量密度时频分布的影响,完成了喷嘴的性能测试。在试验条件下,射流脉冲效果随着腔长的增大先增加后减小,当腔长为18.6 mm时,射流的打击力值和脉冲效果最好;随着工作压力的增加,射流的打击力值和脉冲效果逐渐增大;在围压相同的试验条件下,该喷嘴结构在淹没条件下能够产生更好的打击力值和冲击效果。在下向孔水射流工程应用中,该喷嘴可与煤矿水力冲孔作业结合形成一种自吸式脉冲射流钻头,在进行水力冲孔作业时,选择腔长为18.6 mm的喷嘴结构,利用从喷嘴射出的具有高能量的脉冲射流进行煤体切割,能够提高冲煤的效率;当钻孔垂距增大即围压增大时,可以通过增大工作压力的方法提高脉冲射流的冲击力和破煤效率。本文研究成果和团队前期研究成果为完善自吸脉冲射流喷嘴结构的设计准则提供了依据,喷嘴在不同工况参数下的性能测试也为自吸脉冲射流的工程应用提供了基础。脉冲射流可破除淹没环境中的孔底压持效应和水垫增阻效应,能够提高淹没水射流的冲击力和破煤效率,具有广阔的应用前景。

    1)通过时频分析方法分析不同参数对压力脉动的影响,研究了不同腔长、射流工作压力以及围压等关键参数对射流能量密度时频分布和脉动效果的影响规律,结果表明该喷嘴产生的射流打击力能量时频主要集中在30~50 Hz频带。

    2)在围压为0.1 MPa、工作压力为10 MPa、靶距为10 mm的试验条件下,当腔长为18.6 mm时,自吸环空流体式自激脉冲射流打击力的能量密度最大,射流的打击力能量时频分布三维曲面存在多处明显峰值,射流脉冲效果明显。不合适的腔长会阻碍腔室内涡漩的发展,导致射流的脉冲效果降低。

    3)当工作压力P0≤5 MPa时,自吸脉冲射流能量时频分布杂乱,频率成分较杂,脉冲效果较差。当工作压力P0>5 MPa时,自吸脉冲射流的能量密度增大,射流脉冲效果较好。

    4)随着围压的增大,打击力能量密度减小,射流脉冲效果变差,在围压Pw>0.1 MPa后继续增加围压时射流压力脉动的总能量大幅度减小,减小幅度在47.14%~62.96%。当围压Pw=0.1 MPa时,自吸脉冲射流的脉动峰值和脉动幅值是自激脉冲射流的1.15倍和1.16倍,是普通射流的1.25倍和2.7倍,表明了自吸脉冲射流在同等淹没条件下能产生更好的脉冲效果,引入环空流体能够提高射流的打击力。

  • 图  1   与煤颗粒有关的水的形态[9-10]

    Figure  1.   Morphology of water associated with coal particles[9-10]

    图  2   我国不同煤阶煤储层束缚水饱和度[17-21]

    Figure  2.   Confined water saturation in different coal reservoirs of different coal grades in China[17-21]

    图  3   不同来源水的δD-δ18O关系

    Figure  3.   Relationship between δD-δ18O of coalbed water originated from different sources

    图  4   煤层气产出机理及生产阶段示意[53]

    Figure  4.   Schematic of coal-bed methane production mechanism and production stage[53]

    图  5   压降传播示意[56]

    Figure  5.   Schematic of pressure drop propagation[56]

    图  6   压降传播与排采时间的关系[62]

    Figure  6.   Relationship between pressure drop propagation and discharge time[62]

    图  7   多井排采时形成的压降示意[63]

    Figure  7.   Schematic of pressure drop formed during multi-well discharge[63]

    表  1   煤层水组成分类

    Table  1   Classification of coal-bed water composition

    研究者分类结果分类依据
    高洪烈[11]自由水和吸附水煤的变质程度、煤阶和煤的裂隙发育状况等
    NORINAGA等[12]可冻结水和不可冻结水煤层水的凝结特性
    傅雪海等[1]自由水和束缚水煤层孔隙结构
    ZIMMERMANN等[9]
    Seehra等[10]
    重力水、吸附水、毛细水和粒间水煤层孔隙结构
    唐文蛟等[7]自由水、束缚水、不冻水煤层水的凝结特性
    HAN等[13]重力水、毛细水、吸附水煤层孔隙结构
    李夏伟[14]微小孔中的束缚水与可动水和大中孔中的束缚水与可动水煤层孔隙结构
    苗雅楠[8]自由水、束缚水、生成水煤岩孔隙热演化过程
    SUN等[15]自由水、束缚水煤层孔隙和裂缝的形状、大小和成因
    下载: 导出CSV

    表  2   不同水地球化学特征总结

    Table  2   Summary of different water geochemical characteristics

    水类型 原始沉积水渗入水深成水成岩水
    钠氯系数<0.5>0.5
    肖勒系数>0.129<0.129
    矿化度>10 000 mg/L<1 000 mg/L较高较低
    下载: 导出CSV

    表  3   不同水氢氧同位素组成变化范围 [32]

    Table  3   Variation range of hydroisotope composition of different waters[32]

    水类型δD/‰δ18O/‰备注
    渗入水<−400~+10−60~0
    比较标准:
    SMOWδD=8δ18O+10‰
    沉积水−50~−5−4.5~+3
    成岩水−65~−20+5~+25
    深成水−80~+40+7~+9.5
    下载: 导出CSV

    表  4   国内主要煤层气田矩形井网开发情况

    Table  4   Development of well networks in major coal-bed methane fields in China

    盆地埋深/m井网类型井距/(m×m)采收率/%
    鄂尔多斯盆地[71-72]矩形350×30051.20
    800矩形350×35051.70
    沁水盆地[73]500以浅矩形350×30063.42
    500~
    1 000
    矩形300×25047.94
    1 000以深矩形250×25043.20
    准噶尔盆地[74]520~
    1 250
    矩形250×300
    比德-三塘盆地 [75]600以浅矩形300×25045.31
    下载: 导出CSV
  • [1] 傅雪海, 秦 勇, 韦重韬. 煤层气地质学[M]. 徐州: 中国矿业大学出版社, 2007.

    FU Xuehai, QIN Yong , WEI Chongtao. Geology of coal-bed methane[M]. Xuzhou: China University of Mining and Technology Press, 2007.

    [2]

    MENG Y J,TANG D Z,XU H,et al. Division of coalbed methane desorption stages and its significance[J]. Petroleum Exploration and Development Online,2014,41(5):671−677. doi: 10.1016/S1876-3804(14)60080-X

    [3] 卫明明,琚宜文. 沁水盆地南部煤层气田产出水地球化学特征及其来源[J]. 煤炭学报,2015,40(3):629−635.

    WEI Mingming,JU Yiwen. Geochemical characteristics and sources of water produced in coalbed methane field in southern Qinshui Basin[J]. Journal of China Coal Society,2015,40(3):629−635.

    [4]

    KAISER W R ,HAMILTON D S,SCOTT A R, et al. Geological and hydrological controls on theproducibility of coalbed methane[J]. Journal of the GeologicalSociety,1994,151(3):417−420.

    [5]

    AYERS W B. Coalbed gas systems, resources, and production and a review of contrasting cases from the San Juan and Powder River Basins[J]. AAPG Bulletin,2002,86:1853−1890.

    [6]

    SCOTT A R. Hydrogeologic factors affecting gas contentdistribution in coal beds[J]. International Journal of Coal Geology,2002,50(14):363−287.

    [7] 唐文蛟,张守玉,董建勋,等. 褐煤中水分存在形式的实验研究[J]. 煤炭转化,2015,38(1):5−9,22. doi: 10.3969/j.issn.1004-4248.2015.01.002

    TANG Wenjiao,ZHANG Shouyu,Dong Jianxun,et al. Experimental study on the presence of moisture in lignite[J]. Coal Conversion,2015,38(1):5−9,22. doi: 10.3969/j.issn.1004-4248.2015.01.002

    [8] 苗雅楠. 煤层气藏气水赋存方式及产气机理研究[D]. 北京: 中国石油大学(北京), 2019.

    MIAO Yanan. Study on gas-water storage mode and gas production mechanism of coal-bed methane reservoir[D]. Beijing: China University of Petroleum(Beijing), 2019.

    [9]

    ZIMMERMANN E,NIEMANN DELIUS C. Microwave beneficiation of brown coal[J]. Górnictwo I Geoinzynieria,2007,31(2):627−633.

    [10]

    SEEHRA M S, KALRA A, MANIVANNA A. Dewatering of fine coal slurries by selective heating with microwave[J]. Fuel, 2007, 86(5) 86: 829−834.

    [11] 高洪烈. 论煤层气与地下水[J]. 中国煤田地质,1998(4):45−48.

    GAO Honglie. On coal-bed methane and groundwater[J]. Coal Geology of China,1998(4):45−48.

    [12]

    NORINAGA K,KUMAGAI H,HAYASHI J,et al. Classi-fication of water sorbed in coal on the basis of congelation characteristics[J]. Energy & Fuels,1998,12(3):574−579.

    [13]

    JIN H,ZhAO Z Y,XIAO G L,et al. Influence of coal-seam water on coalbed methane production: a review[J]. Chemistry and Technology of Fuels and Oils,2015,51(2):201−221.

    [14] 李夏伟,刘大锰,蔡益栋,等. 高煤级煤储层含水性特征及其对吸附能力的影响[J]. 地学前缘,2018,25(4):237−244.

    LI Xiawei,LIU Dameng,MENG Caiyi,et al. Aqueous characteristics of high-grade coal reservoirs and their influence on adsorption capacity[J]. Earth Science Frontiers,2018,25(4):237−244.

    [15]

    SUN Y,ZHAI C,XU J Z,et al. A method for accurate characterisation of the pore structure of a coal mass based on two-dimensional nuclear magnetic resonance T1-T2[J]. Fuel,2020,262:263−278.

    [16] 李传亮,彭朝阳. 煤层气的开采机理研究[J]. 岩性油气藏,2011,23(4):9−11,19. doi: 10.3969/j.issn.1673-8926.2011.04.002

    LI Chuanling,PENG Chaoyang. Study on the mining mechanism of coal-bed methane[J]. Lithological Reservoirs,2011,23(4):9−11,19. doi: 10.3969/j.issn.1673-8926.2011.04.002

    [17] 李可心. 临兴西深部煤层气储层特征及气水产出机理[D]. 徐州: 中国矿业大学, 2020.

    LI Kexin. Characteristics of coal-bed methane reservoirs in the west of Linxing and the mechanism of gas-water output[D]. Xuzhou: China University of Mining and Technology, 2020.

    [18] 王 恬,桑树勋,刘世奇,等. 沁水盆地南部高阶煤气水相对渗透特征[J]. 断块油气田,2017,24(2):199−202.

    WANG Tian,SANG Shuxun,LIU Shiqi,et al. Relative permeability characteristics of high-grade gas water in the southern Qinshui Basin[J]. Fault Block Oil & Gas Field,2017,24(2):199−202.

    [19] 李叶朋. 二连盆地霍林河煤田低阶煤孔隙结构模式及气液流动规律[D]. 徐州: 中国矿业大学, 2018.

    LI Yepeng. Pore structure mode and gas-liquid flow pattern of low-order coal in Holinghe Coalfield in Erlian Basin[D]. Xuzhou: China University of Mining and Technology, 2018.

    [20] 彭 辉. 滇东黔西中-高煤阶储层微观尺度下流体流动性研究[D]. 徐州: 中国矿业大学, 2019.

    PENG Hui. Study on fluid fluid fluidity at microscale in middle-high coal-order reservoirs in eastern Yunnan and western Qianxi[D]. Xuzhou: China University of Mining and Technology, 2019.

    [21] 侯 伟,赵天天,张 雷,等. 基于低场核磁共振的煤储层束缚水饱和度应力响应研究与动态预测: 以保德和韩城区块为例[J]. 吉林大学学报(地球科学版),2020,50(2):608−616.

    HOU Wei,ZHAO Tiantian,ZHANG Lei,et al. Stress response study and dynamic prediction of confined water saturation in coal reservoir based on low-field nuclear magnetic resonance: A case study of Baode and Hancheng blocks[J]. Journal of Jilin University (Earth Science Edition),2020,50(2):608−616.

    [22] 陈文文,杨延辉,王生维,等. 高煤阶煤层气藏内水赋存特征与运移规律研究[J]. 煤炭科学技术,2016,44(S1):154−159.

    CHEN Wenwen,YANG Yanhui,WANG Shengwei,et al. Study on Water Storage Characteristics and Transport Law of High-Grade Coalbed Methane Reservoirs[J]. Coal Science and Technology,2016,44(S1):154−159.

    [23] 康保平,黄小燕,郭淑萍,等. 川西坳陷须二气藏气田水成因、运移及其成藏演化[J]. 石油与天然气地质,2018,39(2):309−317.

    KANG Baoping,HUANG Xiaoyan,GUO Shuping,et al. Water genesis, transport and evolution of reservoir formation in the reservoir of the second reservoir in the western sichuan depression[J]. Oil & GasGeology,2018,39(2):309−317.

    [24] 熊 亮,康保平,史洪亮,等. 川西大邑气藏气田水化学特征及其动态 运移[J]. 西南石油大学学报(自然科学版),2011,33(5):84−88,194.

    XIONG Liang,KANG Baoping,SHI Hongliang,et al. Water chemical characteristics and dynamic transport of gas field in Dayi gas reservoir in Western Sichuan Province[J]. Journal of Southwest Petroleum University (Natural Science Edition),2011,33(5):84−88,194.

    [25] 李 剑,车延前,熊先钺,等. 韩城煤层气田11号煤层水化学场特征及其对煤层气的控制作用[J]. 中国石油勘探,2018,23(3):74−80. doi: 10.3969/j.issn.1672-7703.2018.03.009

    LI Jian,CHE Yanqian,XIONG Xianyue,et al. Characteristics of No.11 coalbed water chemical field in Han-cheng Coalbed methane field and its control effect on coalbed methane[J]. PetroChina Exploration,2018,23(3):74−80. doi: 10.3969/j.issn.1672-7703.2018.03.009

    [26] 马行陟,宋 岩,柳少波,等. 煤储层中水的成因、年龄及演化: 卤素 离子、稳定同位素和129I 的证据[J]. 中国科学:地球科学,2013,43(10):1699−1707.

    MA Xingzhi,SONG Yan,LIU Shaobo,et al. Genesis, age and evolution of water in coal reservoirs: Evidence for halogen ions, stable isotopes and 129I[J]. Science China Earth Sciences,2013,43(10):1699−1707.

    [27] 李 剑. 韩城区块水文地质条件对煤层气开发的影响[D]. 北京: 中国矿业大学(北京), 2019.

    LI Jian. Effects of hydrogeological conditionson coal-bed methane development in Hancheng District[D]. Beijing: China University of Mining and Technology-Bejing, 2019.

    [28] 徐 波. 东海盆地西湖凹陷天台反转带花港组地层水地球化学特征及其成因[J]. 海洋地质与第四纪地质,2021,41(3):62−71.

    XU Bo. Geochemical characteristics and genesis of stratigraphic water in the Huagang Formation of the west lake sag inverted belt in the east ch ina sea basin[J]. Marine Geology and Quaternary Geology,2021,41(3):62−71.

    [29] 白 晶,邹磊落,赵 亮,等. 含油气区地下水特征分析及意义[J]. 化学工程与装备,2020(10):166−168.

    BAI Jing,ZOU Leiluo,ZHAO Liang,et al. Characteristic analysis and significance of groundwater in oil and gas-bearing areas[J]. Chemical Engineering and Equipment,2020(10):166−168.

    [30] 楼章华,李 梅,金爱民,等. 中国海相地层水文地质地球化学与油气保存条件研究[J]. 地质学报,2008(3):387−396.

    LOU Zhanghua,LI Mei,JIN Aimin,et al. Study on hydrogeology, geochemistry and oil and gas preservation conditions of marine strata in China[J]. Acta Geologica Sinica,2008(3):387−396.

    [31] 代文军,陈耀宇. 试论早子沟金矿成矿作用过程中地幔流体的参与[J]. 甘肃地质,2022,31(1):29−35.

    DAI Wenjun,CHEN Yaoyu. Discussion on the participation of mantle fluid in the metallogenic process of Zaozigou Gold Ore[J]. Gansu Geology,2022,31(1):29−35.

    [32] 杨绪充. 油气田水文地质学 [M]. 北京: 石油大学出版社, 1993: 110.

    YANG Xuchong. Hydrogeology of oil and gas fields[M]. Beijing: University of Petroleum Press, 1993: 110.

    [33]

    ADELANA. Environmental isotopes in hydrogeology[M]. New Jersey: John Wiley& Sons Inc, 2005.

    [34] 韩 永,王广才,邢立亭,等. 地下水放射性同位素测年方法研究进展[J]. 煤田地质与勘探,2009,37(5):37−42. doi: 10.3969/j.issn.1001-1986.2009.05.009

    HAN Yong,WANG Guangcai,XING Liting,et al. ResearchProgress on Radioisotope Dating Methods for Groundwater[J]. Coal Geology and Exploration,2009,37(5):37−42. doi: 10.3969/j.issn.1001-1986.2009.05.009

    [35] 曾海鳌,吴敬禄,刘 文,等. 哈萨克斯坦东部水体氢、氧同位素和水化学特征[J]. 干旱区地理,2013,36(4):662−668.

    ZENG Haiao,WU Jinglu,LIU Wen,et al. Hydrogen, oxygen isotopes and water chemistry characteristics of water bodies in eastern Kazakhstan[J]. Arid Land Geography,2013,36(4):662−668.

    [36] 郑淑蕙,侯发高,倪葆龄. 我国大气降水的氢氧稳定同位素研究[J]. 科学通报,1983(13):801−806.

    ZHENG Shuhui,HOU Fagao,NI Baoling. Study on hydrogen-oxygen stable isotopes of atmospheric precipitation in China[J]. Chinese Science Bulletin,1983(13):801−806.

    [37] 王善博,唐书恒,万 毅,等. 山西沁水盆地南部太原组煤储层产出水氢氧同位素特征[J]. 煤炭学报,2013,38(3):448−454.

    WANG Shanbo,TANG Shuheng,WAN Yi,et al. Isotope characteristics of hydrogen and oxygen produced in coal reservoirs of Taiyuan Formation in the southern Qinshui Basin of Shanxi Province[J]. Journal of China Coal Society,2013,38(3):448−454.

    [38] 时 伟,唐书恒,李忠城,等. 沁水盆地南部山西组煤储层产出水氢氧同位素特征[J]. 煤田地质与勘探,2017,45(2):62−68. doi: 10.3969/j.issn.1001-1986.2017.02.011

    SHI Wei,TANG Shuheng,LI Zhongcheng,et al. Isotope characteristics of hydrogen and oxygen produced in coal reservoirs of the Shanxi Formation in the southern Qinshui Basin[J]. Coal Geology and Explorat-ion,2017,45(2):62−68. doi: 10.3969/j.issn.1001-1986.2017.02.011

    [39] 张向阳. 放射性同位素—揭示地下水年龄的时钟[J]. 国土资源科普与文化,2019(4):21−23.

    ZHANG Xiangyang. Radioisotopes—clocks for revealing groundwater age[J]. Science and Culture of Land and Resources,2019(4):21−23.

    [40] 葛燕燕. 煤系多层叠置含水系统及煤层气合排水源判识[D]. 徐州: 中国矿业大学, 2015.

    GE Yanyan. Identification of coal-based multilayer superimposed water-bearing system and coal-bed methane combined drainage source[D]. Xuzhou: China University of Mining and Technology, 2015.

    [41]

    GLYNN P D,PLUMMER L N. Geochemistry and the understanding of groundwater systems[J]. Hydrogeology Journal,2005,13(1):263−287. doi: 10.1007/s10040-004-0429-y

    [42]

    CHEN Z,NIE Z,ZHANG G,et al. Environmental isotopic study on the recharge and residence timeof groundwater in the Heihe River Basin, north-western China[J]. Hydrogeology Journal,2006,14(8):1635−1651. doi: 10.1007/s10040-006-0075-7

    [43] 王宗礼,何 建. 地下水年龄测试的主要方法与进展[J]. 甘肃水利水电技术,2014,50(1):6−8,63.

    WANG Zongli,HE Jian. The main methods and progress of groundwater age test[J]. Gansu Water Resources and Hydropower Engineering,2014,50(1):6−8,63.

    [44] 王海超. 沁水盆地中南部煤系气储层物性及叠置成藏模式[D]. 徐州: 中国矿业大学, 2017.

    WANG Haichao. Physical properties and stacked reservoir patterns of coal-based gas reservoirs in central and southern Qinshui Basin[D]. Xuzhou: China University of Mining and Technology, 2017.

    [45] 李跃国,姚程鹏,杨曙光,等. 准南米泉地区煤层气成因及其富集成藏机理研究[J]. 煤炭科学技术,2021,49(4):220−226.

    LI Yueguo,YAO Chengpeng,YANG Shuguang,et al. Study on the Genesis of Coalbed Methane and Its Reservoir Enrichment Mechanism in Junnanmiquan Area[J]. Coal Science and Technology,2021,49(4):220−226.

    [46] 田文广,汤达祯,王志丽,等. 鄂尔多斯盆地东北缘保德地区煤层气成因[J]. 高校地质学报,2012,18(3):479−484.

    TIAN Wenguang,TANG Dazhen,WANG Zhili,et al. Genesis of coal-bed methane in Baode area, northeast edge of Ordos Basin[J]. Geological Journal of Universities,2012,18(3):479−484.

    [47] 陈 刚,胡宗全,张永贵,等. 延川南区块煤层气富集高产的地质控制作用[J]. 天然气地球科学,2016,27(11):2093−2102.

    CHEN Gang,HU Zongquan,ZHANG Yonggui,et al. Geological control effect of coalbed methane enrichment and high yield in Yanchuan South Block[J]. Natural Gas Geoscience,2016,27(11):2093−2102.

    [48] 崔明明,王宗秀,樊爱萍,等. 鄂尔多斯盆地苏里格气田西南部地层水特征与气水关系[J]. 天然气地球科学,2018,29(9):1364−1375. doi: 10.11764/j.issn.1672-1926.2018.07.002

    CUI Mingming,WANG Zongxiu,FAN Aiping,et al. Stratigraphic water characteristics and gas-water relationship between southwest sulige gas field in Ordos Basin[J]. Natural Gas Geoscience,2018,29(9):1364−1375. doi: 10.11764/j.issn.1672-1926.2018.07.002

    [49] 刘福田,李荣西,左智峰,等. 鄂尔多斯盆地南部地区上三叠统延长组6段地层水成因及其油气意义[J]. 石油与天然气地质,2018,39(6):1179−1189.

    LIU Futian,LI Rongxi,ZUO Zhifeng,et al. Water genesis and hydrocarbon significance of 6 sections of the Upper Triassic Yanchang Formation in the southern region of Ordos Basin[J]. Oil and Gas Geology,2018,39(6):1179−1189.

    [50] 王 勃. 沁水盆地煤层气富集高产规律及有利区块预测评价[D]. 徐州: 中国矿业大学, 2013.

    WANG Bo. Prediction and evaluation of coal-bed methane enrichment and favorable block in Qinshui Basin[D]. Xuzhou: China University of Mining and Technology, 2013.

    [51] 潘一山,唐巨鹏,李成全. 煤层中气水两相运移的NMRI试验研究[J]. 地球物理学报,2008(5):1620−1626. doi: 10.3321/j.issn:0001-5733.2008.05.038

    PAN Yishan,TANG Jupeng,LI Chengquan. NMRI experimental study on the two-phase transport of gas and water in coal seams[J]. Chinese Journal of Geophysics,2008(5):1620−1626. doi: 10.3321/j.issn:0001-5733.2008.05.038

    [52] 刘新福,綦耀光,胡爱梅,等. 煤层气井气水两相流入动态关系研究[J]. 中国矿业大学学报,2011,40(4):561−565,591.

    LIU Xinfu,QI Yaoguang,HU Aimei,et al. Study on the dynamic relationship between gas-water inflow of coal-bed methane wells[J]. Journal of China University of Mining and Technology,2011,40(4):561−565,591.

    [53] 王国强,吴建光,熊德华,等. 沁南潘河煤层气田稳控精细排采技术[J]. 天然气工业,2011,31(5):31−34,115.

    WANG Guoqiang,WU Jiangguang,XIONG Dehua,et al. Qinnan-Panhe coalbed methane field stability control fine extraction technology[J]. Natural Gas Industry,2011,31(5):31−34,115.

    [54] 邹雨时,张士诚,张 劲,等. 煤粉对裂缝导流能力的伤害机理[J]. 煤炭学报,2012,37(11):1890−1894.

    ZOU Yushi,ZHANG Shicheng,ZHANG Jin,et al. The injury mechanism of pulverized coal on the ability of crack diversion[J]. Journal of China Coal Society,2012,37(11):1890−1894.

    [55] 李俊乾,卢双舫,薛海涛,等. 高阶煤层气储层非均质性及其定量评价—以沁水盆地南部郑庄区块为例[J]. 石油与天然气地质,2016,37(1):72−79.

    LI Junqian,LU Shuangfang,XUE Haitao,et al. Heterogeneity and quantitative evaluation of higher-order coal-bed methane reservoirs: A case study of Zhengzhuang Block in the south of Qinshui Basin[J]. Oil and Gas Geology,2016,37(1):72−79.

    [56] 刘 贺,罗 勇,雷坤超,等. 基于渗流力学建立的煤层气井排水降压模型及排采规律分析[J]. 煤矿安全,2019,50(2):190−194.

    LIU He,LUO Yong,LEI Kunchao,et al. Analysis of drainage pressure reduction model and discharge law of coalbed methane well based on seepage mechanics[J]. Coal Mine Safety,2019,50(2):190−194.

    [57] 杜严飞,吴财芳,邹明俊,等. 煤层气排采过程中煤储层压力传播规律研究[J]. 煤炭工程,2011(7):87−89.

    DU Yanfei,WU Caifang,ZOU Mingjun,et al. Study on the propagation law of coal reservoir pressure in the process of coalbed methane exhaust and production[J]. Coal Engineering,2011(7):87−89.

    [58]

    VAFERI B,SALIMI V,BANIANI D D,et al. Predictionof transient pressure response in the petroleum reservoirs using orthogonal collocation[J]. Journal of Petroleum Science and Engineering,2012,98(11):156−163.

    [59] 叶建平,陆小霞. 我国煤层气产业发展现状和技术进展[J]. 煤炭科学技术,2016,44(1):24−28.

    YE Jianping,LU Xiaoxia. Development status and technological progress of coalbed methane industry in China[J]. Coal Science and Technology,2016,44(1):24−28.

    [60] 刘世奇,桑树勋,李梦溪,等. 沁水盆地南部煤层气井网排采压降漏斗的控制因素[J]. 中国矿业大学学报,2012,41(6):943−950.

    LIU Shiqi,SANG Shuxun,LI Mengxi,et al. Controlling factors of pressure drop funnel in coalbed methane network drainage in southern Qinshui Basin[J]. Journal of China University of Mining and Technology,2012,41(6):943−950.

    [61] 王 渊,王辰龙,王凤清. 煤层气井压降规律与排采参数关系分析−以保德区块为例[J]. 石油钻采工艺,2019,41(4):502−508.

    WANG Yuan,WANG Chenlong,WANG Fengqing. Analysis on the relationship between pressure drop law and exhaust and production parameters of coalbed methane wells: a case study of baode block[J]. Petroleum Drilling and Production Technology,2019,41(4):502−508.

    [62] 赵 金,张遂安. 煤层气排采储层压降传播规律研究[J]. 煤炭科学技术,2012,40(10):65−68.

    ZHAO Jin,ZHANG Suian. Study on pressure drop propagation law of coal-bed methane exhaustandproduction reservoir[J]. Coal Science and Technology,2012,40(10):65−68.

    [63] 杜彩霞,张遂安,刘 程,等. 煤层气规模开发条件下压力传播特征研究[J]. 煤炭科学技术,2016,44(12):179−183.

    DU Caixia,ZHANG Suian,LIU Cheng,et al. Study on pressure propagation characteristics under the conditions of coal-bed methane scale development[J]. Coal Science and Technology,2016,44(12):179−183.

    [64] 王卫东,张亚飞,孔庆虎,等. 煤层气干扰试井测试在柿庄区块产能分析中的应用研究[J]. 中国煤层气,2021,18(3):29−34. doi: 10.3969/j.issn.1672-3074.2021.03.008

    WANG Weidong,ZHANG Yafei,KONG Qinghu,et al. Application of coal-bed methane interference test in capacity analysis of Persimmon Block[J]. China Coalbed Methane,2021,18(3):29−34. doi: 10.3969/j.issn.1672-3074.2021.03.008

    [65] 李国富,田永东. 煤层气井排水采气机理浅探[J]. 中国煤炭,2002(7):4,33−35.

    LI Guofu,TIAN Yongdong. Shallow exploration of drainage gas production mechanism of coalbed methane well[J]. China Coal,2002(7):4,33−35.

    [66] 田永东. 试论煤层气地面开发的规模性[J]. 科技情报开发与经济,2005(13):163−165.

    TIAN Yongdong. On the scale of coal-bed methane surface development[J]. Science and Technology Information Development and Economy,2005(13):163−165.

    [67]

    HARRISON S M,GENTZIS T ,PAYNE M.Hydraulic, water quality, and isotopic characterization of Late Cretaceous–Tertiary Ardley coal waters in a key test-well, Pembina–Warburg exploration area, Alberta, Canada[J]. Bulletin of Canadian Petroleum Geology,2006,54(3):238−260. doi: 10.2113/gscpgbull.54.3.238

    [68] 杜 鹏. 煤层气开发井间干扰特征研究[D]. 青岛: 中国石油大学(华东), 2013.

    DU Peng. Study on interwell interference characteristics of coal-bed methane development[D]. Qingdao: China University of Petroleum (East China), 2013.

    [69] 张遂安,秦 鹏,张典坤,等. 煤层气井井间干扰试井技术研究[J]. 煤炭科学技术,2015,43(12):75−79.

    ZHANG Suian,QIN Peng,ZHANG Diankun,et al. Research on interwell interference well test technology of coalbed methane[J]. Coal Science and Technology,2015,43(12):75−79.

    [70] 贾奇锋,刘大锰,蔡益栋. 煤层气开采井间干扰研究进展[J]. 煤炭学报,2020,45(S2):882−893.

    JIA Qifeng,LIU Damang,CAI Yidong. Research Progress on Interwell Interference in Coalbed Methane Mining[J]. Journal of China Coal Society,2020,45(S2):882−893.

    [71] 王 宁,王运海,程 翠,等. 数值模拟技术在煤层气开发井网设计中的应用−以鄂尔多斯盆地延川南区块为例[J]. 油气藏评价与开发,2014,4(6):61−65.

    WANG Ning,WANG Yunhai,CHENG Cui,et al. Application of Numerical Simulation Technology in Well Network Design for Coal-Bed Methane Development: A Case Study of Yanchuan South Block in Ordos Basin[J]. Reservoir Evaluation and Development,2014,4(6):61−65.

    [72] 赵 欣,姜 波,徐 强,等. 煤层气开发井网设计与优化部署[J]. 石油勘探与开发,2016,43(1):84−90.

    ZHAO Xin,JIANG Bo,XU Qiang,et al. Design and optimal deployment of coal-bed methane development well network[J]. Petroleum Exploration and Development,2016,43(1):84−90.

    [73] 郭 晨,秦 勇,韩 冬. 黔西比德—三塘盆地煤层气井产出水离子动态及其对产能的指示[J]. 煤炭学报,2017,42(3):680−686.

    GUO Chen,QIN Yong,HAN Dong. Dynamics of water ions produced by coalbed methane wells in Qianxi Bid-Santang Basin and their indication of production capacity[J]. Journal of Coal Society,2017,42(3):680−686.

    [74] 白铁峰. 大倾角煤层煤层气井网优化[D]. 北京: 中国石油大学(北京), 2020.

    BAI Tiefeng. Optimization of coalbed methane network in large inclination coalbed[D]. Beijing: China University of Petroleum (Beijing), 2020.

    [75] 李 腾. 不同构造条件下多煤层区煤层气井井型井网优化设计[D]. 徐州: 中国矿业大学, 2014.

    LI Teng. Optimization design of well-type well network of coalbed methane wells in multicoal-bed area under different structural conditions[D]. Xuzhou: China University of Mining and Technology, 2014.

    [76] 伊永祥. 沁水盆地柿庄南区块煤层气井生产特征及排采控制研究[D]. 北京: 中国地质大学(北京), 2020.

    YI Yongxiang. Production characteristics and dischargecontrol of coalbed methane wells in Persimmon Zhuangnan Block, Qinshui Basin[D]. Beijing: China University of Geosciences(Beijing), 2020.

    [77] 倪小明,张崇崇,王延斌,等. 单相水流阶段煤层气井裂隙水运移的临界裂隙尺寸数学模型[J]. 工程力学,2015,32(4):250−256.

    NI Xiaoming,ZHANG Chongchong,WANG Yanbin,et al. Mathematical model of critical fracture size of fracturewater transport in coalbed methane wells in single-phase water flow stage[J]. Engineering Mechanics,2015,32(4):250−256.

    [78] 刘世奇,桑树勋,MA Jingsheng,等. 沁水盆地南部高阶煤储层气水产出过程分析[J]. 煤炭科学技术,2017,45(9):1−6,24.

    LIU Shiqi,SANG Shuxun,Ma Jingsheng,et al. Analysis of gas and water production process of high-order coal reservoir in southern Qinshui Basin[J]. Coal Science and Technology,2017,45(9):1−6,24.

    [79] 胡秋嘉,刘世奇,闫 玲,等. 樊庄-郑庄区块无烟煤储层气水赋存-运移-产出路径的研究[J]. 煤矿安全,2020,51(10):218−222.

    HU Qiujia,LIU Shiqi,YAN ling,et al. Study on the path of gaswater storage-transport-output in anthracite coal reservoir in fanzhuang-zhengzhuang block[J]. Coal Mine Safety,2020,51(10):218−222.

    [80] 皇凡生,康毅力,李相臣等. 单相水流诱发裂缝内煤粉启动机理与防控对策[J]. 石油学报,2017,38(8):947−954.

    HUANG Fansheng,KANG Yili,Li Xiangchen,et al. Startupmechanism and prevention and control countermeasures of pulverized coal in cracks induced by single-phase water flow[J]. Acta Petroleum Sinica,2017,38(8):947−954.

    [81] 胡友林,乌效鸣. 煤层气储层水锁损害机理及防水锁剂的研究[J]. 煤炭学报,2014,39(6):1107−1111.

    HU Youlin,WU Xiaoming. Study on water lock damage mechanism and waterproof locking agent of coal-bed methane reservoir[J]. Journal of Coal Engineering,2014,39(6):1107−1111.

    [82] 左银卿,张学英,周 叡,等. 沁南地区高煤阶煤储层水敏效应及其控制因素[J]. 油气地质与采收率,2014,21(5):107−110,118. doi: 10.3969/j.issn.1009-9603.2014.05.027

    ZUO Yinqing,ZHANG Xxueying,ZHOU Rui,et al. Water sensitivity effect and its controlling factors in high grade coal reservoirs in Qinnan area[J]. Petrolum Geology and Recovery,2014,21(5):107−110,118. doi: 10.3969/j.issn.1009-9603.2014.05.027

    [83] 汪伟英,马 丽,原晓珠,等. 煤层气储层阳离子交换容量及其对煤岩物性的影响[J]. 煤炭科学技术,2011,39(9):118−120.

    WANG Weiying,MA Li,YUAN xiaozhu,et al. Cation exchange capacity of coalbed methane reservoirs and its influence on coal rock properties[J]. Coal Scienceand Technology,2011,39(9):118−120.

    [84] 柳迎红,房茂军,廖 夏. 煤层气排采阶段划分及排采制度制定[J]. 洁净煤技术,2015,21(3):121−124,128.

    LIU Yinghong,FANG Maojun,Liaoxia. Coalbed methane extraction stage division and extraction system[J]. Clean Coal Technology,2015,21(3):121−124,128.

    [85] 戴 楠. 大佛寺煤层气水平井降压与产气的耦合分析[D]. 西安: 西安科技大学, 2018.

    DAI Nan. Coupling analysis of pressure relief and gas production in horizontal coal-bed methane wells of Dafo Temple[D]. Xi’an : Xi’an University of Science and Technology, 2018.

    [86] 续化蕾,李焕文,王云飞,等. 煤层气储层水锁伤害影响因素及防治措施研究[J]. 钻采工艺,2019,42(6):110−112.

    XU Hualei,LI Huanwen,Wang Yunfei,et al. Research on influencing factors of water lock injury in coal-bed methane reservoirs and prevention measures[J]. Drilling and Mining Technology,2019,42(6):110−112.

    [87] 宋金星,陈培红,王 乾. 煤储层水基压裂液用表面活性剂的筛选实验[J]. 煤田地质与勘探,2017,45(6):79−83.

    SONG Jinxing,CHEN Peihong,WANG Qian. Screening experiments of surfactants for water-based fracturing fluids in coal reservoirs[J]. CoalField Geology and Exploration,2017,45(6):79−83.

    [88] 蒋金龙. 煤粉在压裂支撑裂缝内的微观运移机理研究[D]. 成都: 西南石油大学, 2018.

    JIANG Jinlong. Study on the microscopic transport mechanism of pulverized coal in fracturing support fractures[D]. Chengdu: Southwest Petroleum University, 2018.

    [89] 许耀波. 煤层气水平井煤粉产出规律及其防治措施[J]. 煤田地质与勘探,2016,44(1):43−46.

    XU Yaobo. Production law of pulverized coal in horizontal coal-bed methane wells and its prevention and control measures[J]. Coal Geology and Exploration,2016,44(1):43−46.

图(7)  /  表(4)
计量
  • 文章访问数:  196
  • HTML全文浏览量:  49
  • PDF下载量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-23
  • 网络出版日期:  2023-05-14
  • 刊出日期:  2023-04-29

目录

/

返回文章
返回