高级检索

拉剪作用下椭圆孔洞砂岩力学及破坏特征模拟研究

王海洋, 李金浜, 郑仕跃, 周宴民, 蒋文伟

王海洋,李金浜,郑仕跃,等. 拉剪作用下椭圆孔洞砂岩力学及破坏特征模拟研究[J]. 煤炭科学技术,2023,51(8):86−96

. DOI: 10.13199/j.cnki.cst.2022-0656
引用本文:

王海洋,李金浜,郑仕跃,等. 拉剪作用下椭圆孔洞砂岩力学及破坏特征模拟研究[J]. 煤炭科学技术,2023,51(8):86−96

. DOI: 10.13199/j.cnki.cst.2022-0656

WANG Haiyang,LI Jinbang,ZHENG Shiyue,et al. Simulation on mechanical and failure characteristics of sandstone with elliptical hole under tension-shear effect[J]. Coal Science and Technology,2023,51(8):86−96

. DOI: 10.13199/j.cnki.cst.2022-0656
Citation:

WANG Haiyang,LI Jinbang,ZHENG Shiyue,et al. Simulation on mechanical and failure characteristics of sandstone with elliptical hole under tension-shear effect[J]. Coal Science and Technology,2023,51(8):86−96

. DOI: 10.13199/j.cnki.cst.2022-0656

拉剪作用下椭圆孔洞砂岩力学及破坏特征模拟研究

基金项目: 

国家自然科学基金资助项目(51804058);重庆市教委科学技术研究资助项目(KJQN201800729)

详细信息
    作者简介:

    王海洋: (1988—),男,山东淄博人,副教授,博士。E-mail:wanghaiyang_cq@cqjtu.edu.cn

    通讯作者:

    李金浜: (1997—),男,河南驻马店人,硕士。E-mail:1173749091@qq.com

  • 中图分类号: TD313; TU45

Simulation on mechanical and failure characteristics of sandstone with elliptical hole under tension-shear effect

Funds: 

National Natural Science Foundation of China (51804058); Chongqing Municipal Education Commission Science and Technology Research Funding Project (KJQN201800729)

  • 摘要:

    受地质环境和工程扰动的影响,椭圆孔洞缺陷广泛赋存在工程岩体中,开挖卸荷会使部分岩体产生回弹拉应力,在孔洞缺陷的影响下形成拉剪应力区,诱导岩体的拉剪破坏,导致工程岩体的稳定性大幅度降低。为研究椭圆孔洞岩体在拉剪作用下的力学特性和变形破坏规律,基于室内岩石力学试验结果,采用颗粒流程序建立数值模型,对不同孔洞倾角α、长短轴之比k下的孔洞岩体进行了拉剪数值试验,并结合应力张量揭示了裂纹演化的细观机理。结果表明:当k不变时,随着α的增加,剪切强度在低法向拉应力下(1~3 MPa)近似呈“W”型变化规律,在α为120°或150°取得最小值,在α为90°取得最大值;剪切强度在高法向拉应力下(4~6 MPa)呈先增大后减小的变化趋势,分别在α为0°和90°时取得最小值和最大值。当α不变时,对于α为非90°的孔洞岩体,剪切强度随k的增大呈非线性下降。孔洞的应力集中程度对法向拉应力的敏感性随α的增大而先减小后增大,α为0°时,敏感性最高,α为90°时,敏感性最低,α为120°和150°时的敏感性高于α为30°和60°时的敏感性,孔洞岩体的强度相较于完整岩体有明显的劣化且劣化程度与法向拉应力呈正相关。裂纹起裂应力水平随法向拉应力的增大而增大,起裂角随法向拉应力的增大而减小。孔洞岩体在拉剪作用下的破坏形式为反翼裂纹贯通导致的拉伸破坏,拉剪作用下岩体内部拉应力和压应力耦合形成最大受拉区,最大受拉区靠近剪切加载面一侧的边界为裂纹的扩展路径,裂纹由孔洞处的塑性屈服而起裂,裂纹起裂后,颗粒接触断裂造成应力的释放与重分布,裂纹再次沿重分布后的最大主应力方向扩展,宏观上表现为裂纹的非线性扩展模式。

    Abstract:

    Under the influence of geological environment and engineering disturbance, elliptical hole-defects exist widely in engineering rock mass. Excavation unloading causes rebound tensile stress in rock mass. The tension-shear stress zone is formed under the hole defects, which induces the tension-shear failure of rock mass and greatly reduce the stability of engineering rock mass. In order to study the mechanical properties and failure behavior of the rock mass with an elliptical hole under tension and shear, the numerical model was built using discrete element numerical simulation based on the rock mechanics test results. Furthermore, the tension-shear numerical modelling tests of  rock mass with an elliptical hole of different hole inclination angleαand the ratio of long to short axiskwere carried out, and the meso-mechanism of crack evolution was revealed from the point of view of stress tensor. The results show that whenkis constant, with the increase ofα, the shear strength approximately shows a “W” shape under low normal tensile stress (1–3 MPa), and the minimum value is obtained whenαis 120° or 150°, and the maximum value is obtained whenαis 90°. Under high normal tensile stress (4–6 MPa), the shear strength increases at first and then decreases, and the minimum and maximum values are obtained whenαis 0° and 90°, respectively. Whenαis constant, for the rock mass with an elliptical hole ifαis not 90°, the shear strength decreases nonlinearly with the increase ofk. The sensitivity of stress concentration of the elliptical hole to normal tensile stress decreases at first and then increases with the increase ofα, and the sensitivity is the highest whenαis 0°. The sensitivity is the lowest whenαis 90°, and the sensitivity is higher whenαis 120°and 150° than that whenαis 30°and 60°. The strength of the rock mass with an elliptical hole is obviously worse than that of intact rock mass, and the degree of deterioration is positively related to the normal tensile stress. The level of crack initiation stress increases with the increase of normal tensile stress, and the crack initiation angle decreases with the increase of normal tensile stress. The failure type of the rock mass with an elliptical hole under tension and shear is the tensile failure caused by anti-wing crack penetration. Under the effect of tension and shear, the maximum tensile zone is formed by the coupling of tensile stress and compressive stress in the rock mass, and the boundary near the side of the shear loading surface is the crack propagation path. The crack starts from the plastic yield at the elliptical hole. After the crack initiation, the stress is released and redistributed by the particle contact fracture, and the crack propagates along the direction of the maximum principal stress after the redistribution, which shows the nonlinear propagation mode of the crack macroscopically.

  • 图  1   平直节理模型示意[16]

    Figure  1.   Schematic diagram of flat joint model[16]

    图  2   模型尺寸及加载模式

    Figure  2.   Model size and loading mode

    图  3   室内试验与数值模拟结果对比

    Figure  3.   Comparison between indoor test and numerical simulation results

    图  4   不同倾角α下孔洞岩体强度特征(k=3)

    Figure  4.   Strength characteristics of pore rock mass under different dip angle α (k=3)

    图  5   不同长短轴之比k下孔洞岩体强度特征(α=30°)

    Figure  5.   Strength characteristics of hole rock mass under different long short axis ratio k (α=30°)

    图  6   剪切强度随k的变化(α=90°)

    Figure  6.   Variation of shear strength with k (α=90°)

    图  7   剪切强度差值

    Figure  7.   Shear strength difference

    图  8   剪切强度劣化

    Figure  8.   Deterioration of shear strength

    图  9   起裂应力及起裂角监测

    Figure  9.   Monitoring of crack initiation stress and crack initiation angle

    图  10   剪切应力–位移曲线

    Figure  10.   Shear stress-displacement curve

    图  11   起裂应力水平及起裂角

    Figure  11.   Crack initiation stress level and crack initiation angle

    图  12   平均起裂角

    Figure  12.   Average crack initiation angle

    图  13   平面一点应力状态

    Figure  13.   Stress state at one point in the plane

    图  14   应力张量演化

    Figure  14.   Evolution of stress

    表  1   砂岩数值模型细观参数

    Table  1   Meso parameters of sandstone numerical model

    模型参数数值
    颗粒
    单元
    最小颗粒半径/mm0.45
    最大、最小颗粒粒径比1.66
    颗粒密度ρ/(kg·m−3)2 700
    线性
    接触
    模型
    有效模量/MPa20 500
    刚度比1.98
    摩擦因数0.6
    线性
    黏结
    接触
    模型
    接触模量/MPa20 500
    刚度比1.98
    摩擦因数0.6
    法向黏结力/N100
    切向黏结力/N100
    平直
    节理
    接触
    模型
    接触模量/MPa20 500
    刚度比1.98
    摩擦因数0.5
    抗拉强度/MPa39.8
    黏聚力/MPa65.3
    半径系数1
    交界面段数4
    下载: 导出CSV

    表  2   裂纹扩展模式

    Table  2   Crack propagation mode

    椭圆孔洞长短轴之比k椭圆孔洞倾角
    30°60°90°120°150°
    下载: 导出CSV
  • [1] 刘晓丽,王思敬,王恩志,等. 单轴压缩岩石中缺陷的演化规律及岩石强度[J]. 岩石力学与工程学报,2008,27(6):7.

    LIU Xiaoli,WANG Sijing,WANG Enzhi,et al. Evolutionary rules of flaws in rock subjected to u niaxial compression and rock strength[J]. Chinese Journal of Rock Mechanics and Engineering,2008,27(6):7.

    [2]

    WU F Q,LIU T,LIU J Y,et al. Excavation unloading destruction phenomena in rock dam foundations[J]. Bulletin of Engineering Geology and the Environment,2014,68(2):257−262.

    [3]

    HUANG R Q,WANG X N,CHAN L S. Triaxial unloading test of rocks and its implication for rock burst[J]. Bulletin of Engineering Geology and the Environment,2001,60(1):37−41.

    [4]

    ZHU T T,HUANG D. Experimental investigation of the shear mechanical behavior of sandstone under unloading normal stress[J]. International Journal of Rock Mechanics and Mining Sciences,2019,114:186−194. doi: 10.1016/j.ijrmms.2019.01.003

    [5]

    SIMAN–TOV S,KATZ O,MATMON A. Examining the effects of ground motion and rock strength on the size of boulders falling from an overhanging cliff[J]. Engineering Geology,2017,220:164−174. doi: 10.1016/j.enggeo.2017.02.008

    [6] 李建林. 三峡工程岩石拉剪断裂特性的试验研究[J]. 地下空间,2002(2):149−152, 189.

    LI Jianlin. Experimental study on tensile shear fracture characteristics of rocks in the Three Gorges Project[J]. Underground space,2002(2):149−152, 189.

    [7]

    RAMSEY J M,CHESTER F M. Hybrid fracture and the transition from extension fracture to shear fracture[J]. Nature,2004,428(6978):63−66. doi: 10.1038/nature02333

    [8] 郭静芸,李 晓,李守定,等. 拉伸剪切条件下岩石的工程地质力学特性[J]. 工程地质学报,2012,20(6):1020−1027.

    GUO Jingyun,LI Xiao,LI Duoding,et al. The enfineering geology mechanical properties of rock in tension-shear state[J]. Journal of Engineering Geology,2012,20(6):1020−1027.

    [9] 李守定,李 晓,郭静芸,等. 岩石拉伸剪切破裂试验研究[J]. 工程地质学报,2014,22(4):655−666.

    LI Duoding,GUO Jingyun,LI Xiao,et al. Research of rock failure testing under combined shear and tension[J]. Journal of Engineering Geology,2014,22(4):655−666.

    [10] 周 辉,卢景景,徐荣超,等. 硬脆性大理岩拉剪破坏特征与屈服准则研究[J]. 岩土力学,2016,37(2):305−314,349.

    ZHOU Hui,LU Jingjing,XU Rongchao,et al. Research on tension-shear failure characteristics and yield criterion of hard brittle marble[J]. Rock and Soil Mechanics,2016,37(2):305−314,349.

    [11] 岑夺丰,刘 超,黄 达. 砂岩拉剪强度和破裂特征试验研究及数值模拟[J]. 岩石力学与工程学报,2020,39(7):1333−1342.

    CEN Duofeng,LIU Chao,HUANG Da. Experimental and numerical study on tensile-shear strength and rupture characteristics of sandstone[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(7):1333−1342.

    [12]

    HUANG D,CEN D F,SONG Y X. Comparative Investigation on the compression-shear and tension-shear behaviour of sandstone at different shearing rates[J]. Rock Mechanics and Rock Engineering,2020,53(7):3111−3131.

    [13] 周超彪,刘 东,姜清辉. 拉剪作用下类岩石试样的力学特性与损伤破坏机制[J]. 岩土力学,2021,42(12):3335−3344.

    ZHOU Chaobiao,LIU Dong,JIANG Qinghui. Mechanical properties and damage failure mechanism of rocklike specimens under tension-shear[J]. Rock and Soil Mechanics,2021,42(12):3335−3344.

    [14] 王志文,赵海军,马凤山,等. 非均质共面断续节理岩体拉伸剪切破裂机制研究[J]. 工程地质学报,2019,27(5):11.

    WANG Zhiwen,ZHAO Haijun,MA Fengshan,et al. Numerical study on tension-shear failure mechanism of heterogeneous coplanar intermittent jointed rock mass[J]. Journal of Engineering Geology,2019,27(5):11.

    [15] 岑夺丰,刘 超,黄 达. 拉剪应力作用下单裂隙砂岩裂纹扩展规律试验研究[J]. 煤炭学报,2021,46(S2):731−739.

    CEN Duofeng,LIU Chao,HUANG Da. Experimental investigation on crack propagation law of sandstone containing a single fissure under tensile-shear stress[J]. Journal of China Coal Society,2021,46(S2):731−739.

    [16]

    ALEFELD G,MAYER G. Interval analysis: theory and applications[J]. Journal of Computational and Applied Mathematics,2000,121(1/2):421−464.

    [17] 朱谭谭,靖洪文,苏海健,等. 孔洞–裂隙组合型缺陷砂岩力学特性试验研究[J]. 煤炭学报,2015,40(7):1518−1525.

    ZHU Tantan,JING Hongwen,SU Haijian et al. Experimental investigation on mechanical behavior of sandstone with coupling effects under uniaxial compression[J]. Journal of China Coal Society,2015,40(7):1518−1525.

    [18]

    CHEN S,XIA Z,FENG F. Numerical Simulation of Strength, Deformation, and Failure Characteristics of Rock with Fissure Hole Defect[J]. Advances in Materials Science and Engineering,2020,2020(6):1−15.

    [19] 宿 辉,杨家琦,胡宝文,等. 颗粒离散元岩石模型的颗粒尺寸效应研究[J]. 岩土力学,2018,39(12):4642−4650.

    SU Hui,YANG Jiaqi,HU Baowen,et al. Study of particle size effect of rock model based on particle discrete element method[J]. Rock and Soil Mechanics,2018,39(12):4642−4650.

    [20] 张 权,饶秋华,沈晴晴,等. 基于中心组合设计的颗粒流平直节理模型宏细观参数相关性研究[J]. 中南大学学报:自然科学版,2021,52(3):11.

    ZHANG Quan,RAO Qiuhua,SHEN Qingqing,et al. Study on correlation of macro−meso parameters of flat joint model of particle flow code based on central composite design method[J]. Journal of Central South University(Science and Technology),2021,52(3):11.

    [21] 郭佳奇,乔春生. 椭圆孔口塑性区及其在岩溶隧道工程中的应用[J]. 铁道学报,2013,35(3):7.

    GUO Jiaqi,QIAO Chunsheng. Plastic zone around elliptical hole portal and its application in karst tunnel[J]. Journal of the China rail way society,2013,35(3):7.

    [22] 杜明瑞,靖洪文,苏海健,等. 含预制椭圆形孔洞砂岩强度及破坏特征试验研究[J]. 中国矿业大学报,2016,45(6):1164−1171.

    DU Mingrui,JING Hongwen,SU Haijian,et al. Experimental study of strength and failure characteristics of sandstone containing prefabricated elliptical hole[J]. Journal of China university of mining ang technology[J],2016,45(6):1164−1171.

    [23] 朱泉企,李地元,李夕兵. 含预制椭圆形孔洞大理岩变形破坏力学特性试验研究[J]. 岩石力学与工程学报,2019,38(S1):2724−2733.

    ZHU Quanqi,LI Diyuan,LI Xibing. Experimental study on failure and mechanical characteristics of marble containing a prefabricated elliptical hole[J]. Chinese Journal of Rock Mechanics and Engineering,2019,38(S1):2724−2733.

    [24]

    HAN W,JIANG Y,LUAN H,et al. Numerical investigation on the shear behavior of rock-like materials containing fissure-holes with FEM–CZM method[J]. Computers and Geotechnics,2020,125:103670.

    [25]

    LUO X Y,CAO P,LIN Q B. Mechanical behaviour of fracture-filled rock-like specimens under compression-shear loads: An experimental and numerical study[J]. Theoretical and Applied Fracture Mechanics,2021,113:102935.

  • 期刊类型引用(12)

    1. 刘忠海. 煤化工中的焦化废水污染控制原理与技术研究. 中国石油和化工标准与质量. 2025(04): 138-140 . 百度学术
    2. 李泽乙,廖常盛,柴云,王庆宏,詹亚力,陈春茂,陈发源. 焦化废水生化尾水特征及其深度处理技术进展. 工业水处理. 2024(03): 10-23 . 百度学术
    3. 余梦春. 焦化废水工艺流程及深度处理工艺优化分析. 山西化工. 2024(05): 224-226 . 百度学术
    4. 吴震,陈飞勇,刘汝鹏,卢永峰,孙翠珍,罗从伟. 磁介质混凝沉淀技术的现状及探索. 净水技术. 2023(02): 23-38 . 百度学术
    5. 郭娟,米玉辉,陈佳琪,武励鹏,陈旭东. 焦化工业园区中水深度处理及零排放实践. 当代化工研究. 2023(04): 77-79 . 百度学术
    6. 李竞赢,刘启蒙,杨明慧. 矿井水水化学特征及资源化利用研究——以张集煤矿为例. 煤炭科学技术. 2023(04): 254-263 . 本站查看
    7. 唐海龙,樊玉萍,马晓敏,董宪姝,常明. 基于撞击流调控的煤泥水混合过程强化研究. 煤炭科学技术. 2023(10): 323-335 . 本站查看
    8. 章丽萍,姚瑞涵,赵晓曦,崔行健,段梦楠,王丽芳,陈加乐,马泽钰. CaCl_2+除氟药剂两段法处理焦化浓盐水中氟化物研究. 煤炭科学技术. 2023(11): 255-263 . 本站查看
    9. 张志超,牛涛,于豹,石伟. 焦化废水处理工程实例分析. 工业水处理. 2022(07): 179-185 . 百度学术
    10. 张国凯,王艺霏,李亚男,冯卓,武亚宁,杨昊,宋子恒. Fe(Ⅵ)/H_2O_2体系对焦化废水中有机物和煤颗粒物的协同处理研究. 煤炭科学技术. 2022(07): 277-283 . 本站查看
    11. 郑剑平,刘凯林,薛继峰,李高辉,张立峰,涂亚楠. 吡啶对褐煤水煤浆流变性的影响规律研究. 煤炭科学技术. 2022(08): 270-276 . 本站查看
    12. 刘文礼,耿鹏岳,卓启明,马金虎,李佳. 脱硫废水固化体力学特性研究. 煤炭科学技术. 2022(11): 230-235 . 本站查看

    其他类型引用(3)

图(14)  /  表(2)
计量
  • 文章访问数:  118
  • HTML全文浏览量:  22
  • PDF下载量:  60
  • 被引次数: 15
出版历程
  • 收稿日期:  2022-05-02
  • 录用日期:  2022-05-31
  • 网络出版日期:  2023-06-12
  • 刊出日期:  2023-08-24

目录

    /

    返回文章
    返回