高级检索

层状岩石逆倾向与顺倾向剪切破坏特征的差异性研究

李震, 吴冠洋, 司尚金, 刘光旭, 李明明, 张呈祥, 徐荣超

李 震,吴冠洋,司尚金,等. 层状岩石逆倾向与顺倾向剪切破坏特征的差异性研究[J]. 煤炭科学技术,2024,52(7):37−47

. DOI: 10.12438/cst.2024-0222
引用本文:

李 震,吴冠洋,司尚金,等. 层状岩石逆倾向与顺倾向剪切破坏特征的差异性研究[J]. 煤炭科学技术,2024,52(7):37−47

. DOI: 10.12438/cst.2024-0222

LI Zhen,WU Guanyang,SI Shangjin,et al. Differences between reverse and normal shear in failure characteristics of layered rocks[J]. Coal Science and Technology,2024,52(7):37−47

. DOI: 10.12438/cst.2024-0222
Citation:

LI Zhen,WU Guanyang,SI Shangjin,et al. Differences between reverse and normal shear in failure characteristics of layered rocks[J]. Coal Science and Technology,2024,52(7):37−47

. DOI: 10.12438/cst.2024-0222

层状岩石逆倾向与顺倾向剪切破坏特征的差异性研究

基金项目: 

国家自然科学基金资助项目(51704097,51709113);河南省“双一流”学科创建工程资助项目(AQ20230727)

详细信息
    作者简介:

    李震: (1986— ),男,山东泰安人,副教授,博士。E-mail:zhenli@hpu.edu.cn

    通讯作者:

    徐荣超: (1988— ),男,山东烟台人,副教授,博士。E-mail:rcxirsm@126.com

  • 中图分类号: TD325

Differences between reverse and normal shear in failure characteristics of layered rocks

Funds: 

National Natural Science Foundation of China (51704097,51709113); Henan Province “Double first-class” discipline creation Project (AQ20230727)

  • 摘要:

    层状岩石层理效应的研究对深部岩体稳定性分析具有重要意义,而天然层状岩石逆倾向与顺倾向剪切力学行为差异性仍认识不清。为此,开展了0°≤ψ≤180°(ψ为剪切面顺时针旋转至层理面的滑动倾向角)的页岩全角度剪切试验,详细地研究了逆倾向与顺倾向下剪切力学特性和破坏模式的差异性,并结合离散元模拟进行了补充分析与验证。研究结果表明:顺层面剪切时抗剪强度取得最小值,ψ=30°时取得最大值,90°与135°时取得局部极大值,逆倾向抗剪强度相对更高,ψ>30°时随滑动倾向角增加抗剪强度总体呈减小趋势;根据不同滑动倾向角下剪切力学行为的差异性,按滑动倾向角将层状岩石分为三组,即层面张拉与基质剪切组(15°~60°)、基质剪切组(75°~120°)、基质与层面剪切组(135°~180°);基质剪切组在剪切应力−位移曲线峰前均存在应力降现象,层面张拉与基质剪切组在峰后呈“阶梯”状应力降低;张拉破坏与剪切破坏同时存在且以剪切破坏为主;顺层面剪切时层面的剪切裂纹数目占优,ψ=90°时基质体的剪切裂纹数目最多,ψ=30°时层面的张拉裂纹数目最多,其次是基质体的剪切裂纹,ψ=150°时以层面、基质体的剪切裂纹为主。研究揭示了层状岩石逆倾向与顺倾向剪切的各向异性特征及差异性根源,可为各向异性力学模型完善、灾变机制及围岩稳定性分析提供科学依据。

    Abstract:

    The study of the bedding plane effect has important implications for stability analysis of deep rock masses. However, the differences in shear mechanical behavior between natural layered rocks under reverse and normal dip conditions are still not well understood. For this , a full-angle shear test of shale with 0°≤ψ≤180° (ψis the bedding plane inclination angle, defined as the angle of clockwise rotation from the shear surface to the laminar surface) was carried out. The shear mechanical properties and differences in failure modes of shale under different bedding plane inclination angles were extensively analyzed. Additionally, the analysis results were supplemented and verified with discrete element simulations. The results are as follows. Firstly, the minimum shear strength is achieved when shearing parallel to the bedding plane. The strength reaches a maximum atψ=30° and local peaks at 90° and 135°. The shear strength is relatively higher when shearing in the reverse direction. Forψ>30°, the shear strength generally decreases withψ. Secondly, according to the differences in the shear mechanical behavior under variousψ, the layered rocks are divided into three groups: bedding tension and matrix shear group (ψ=15°-60°), matrix shear group (ψ=75°-120°), matrix and bedding shear group (135°-180°). Thirdly, In the pre-peak stage, stress drop phenomenon only exists in the matrix shear group. In the post-peak stage, stress drops in a “step-like” manner for bedding tension and matrix shear group. Fourthly, tension and shear failures coexist, with shear failure being predominant. Lastly, the number of shear cracks of layer is dominant when shearing parallel to the bedding plane. The number of shear cracks in the matrix is the highest at 90°. Atψ= 30°, the maximum number of tensile cracks is observed in the bedding plane, followed by shear cracks in the matrix. The shear cracks are mainly observed in the bedding and matrix atψ= 150°. The study reveals the anisotropic characteristics and differences in reverse and normal dip shear of layered rocks. The results provide a scientific basis for improving anisotropic mechanical models and analyzing disaster mechanisms and surrounding rock stability.

  • 图  1   标准页岩试样及滑动倾向角定义

    Figure  1.   Standard shale specimen and sliding tendency angle definition

    图  2   岩石剪切多轴试验系统

    Figure  2.   Rock shear multi-axial test system

    图  3   抗剪强度随滑动倾向角演化规律

    Figure  3.   Distribution of shear strength with sliding tendency angle

    图  4   法向应力10 MPa时剪切应力−剪切位移曲线

    Figure  4.   Shear stress-shear displacement curve at 10 MPa normal stress

    图  5   不同法向应力下法向位移—剪切位移曲线

    Figure  5.   Normal displacement-shear displacement curves under different normal stresses

    图  6   数值模型与裂纹类型

    Figure  6.   Numerical model and crack type

    图  7   不同剪切方向下各类裂纹数量随剪切位移的演化规律

    Figure  7.   Evolution of number of various types of cracks with shear displacement under different shear directions

    图  8   各类裂纹数目柱状图

    Figure  8.   Histogram of the number of cracks in each category

    图  9   不同剪切方向下破坏形态对比

    Figure  9.   Comparison of damage patterns under different shear directions

    图  10   声发射特征参数的RA-AF平面散点密度图

    Figure  10.   Scatter density map of RA-AF plane

    表  1   层面张拉与基质剪切组破坏形态与破坏模式

    Table  1   Damage morphology and damage pattern of layer tension and matrix shear group

    条件 ψ = 15° ψ = 30° ψ = 45° ψ = 60°
    法向
    应力
    10 MPa
    法向
    应力
    20 MPa
    破坏模式 垂直层面的张拉与基质的剪切破坏
    下载: 导出CSV

    表  2   基质剪切组破坏形态与破坏模式

    Table  2   Damage morphology and damage pattern of matrix shear group

    条件 ψ = 75° ψ = 90° ψ = 105° ψ = 120°
    法向
    应力
    10 MPa
    法向
    应力
    20 MPa
    破坏模式 斜穿层理面基质的剪切破坏
    下载: 导出CSV

    表  3   基质与层面剪切组破坏形态与破坏模式

    Table  3   Damage morphology and damage pattern of shear group of matrix and layer

    条件 ψ = 135° ψ = 150° ψ = 165° ψ = 180°
    法向
    应力
    10 MPa
    法向
    应力
    20 MPa
    破坏模式 基质与层理面的剪切破坏
    下载: 导出CSV

    表  4   颗粒接触参数

    Table  4   Particle contact parameters

    滑动倾向
    角/(°)
    基质有效
    模量/Pa
    基质刚度比 基质黏聚
    力/Pa
    基质拉伸
    强度/Pa
    层理法向
    刚度/(Pa·m−1
    层理切向
    刚度/(Pa·m−1
    层理黏聚
    力/Pa
    层理拉伸
    强度/Pa
    0 1.90×109 1.65 4.30×107 0.82×108 4.20×1012 2.50×1012 3.30×107 4.00×107
    30 4.00×109 1.65 5.30×107 1.50×108 4.50×1012 2.70×1012 6.30×107 3.30×107
    90 2.00×109 1.65 4.20×107 1.50×108 3.50×1012 2.00×1012 3.50×107 2.60×107
    150 3.00×109 1.65 3.90×107 1.40×108 3.00×1012 1.50×1012 2.80×107 3.10×107
    下载: 导出CSV
  • [1] 郝宪杰,袁亮,王少华,等. 硬煤冲击倾向性的层理效应研究[J]. 煤炭科学技术,2018,46(5):1−7.

    HAO Xianjie,YUAN Liang,WANG Shaohua,et al. Study on bedding effect of bump tendency for hard coal[J]. Coal Science and Technology,2018,46(5):1−7.

    [2] 张国宁,赵毅鑫,孙远东,等. 单轴压缩下不同层理煤能量演化及红外辐射特征研究[J]. 煤炭科学技术,1−13[2024-02-17]. http://kns.cnki.net/kcms/detail/11.2402.TD.20240131.1741.009.html.

    ZHANG Guoning,ZHAO Yixin,SUN Yuandong,et al. Energy evolution and infrared radiation characteristics of different bedded coal under uniaxial compression [J]. Coal science and Technology,1−13[2024-02-17]. http://kns.cnki.net/kcms/detail/11.2402.TD.20240131.1741.009.html.

    [3] 姜琳婧,赵会杰,赵怡晴,等. 层理煤岩浸水前后力学性质研究[J]. 煤炭科学技术,2023,51(10):97−108.

    JIANG Linjing,ZHAO Huijie,ZHAO Yiqing,et al. Study on mechanical properties of coal before and after flooding considering bedding direction[J]. Coal Science and Technology,2023,51(10):97−108.

    [4] 邓华锋,齐豫,李建林,等. 水–岩作用下断续节理砂岩力学特性劣化机理[J]. 岩土工程学报,2021,43(4):634−643. doi: 10.11779/CJGE202104005

    DENG Huafeng,QI Yu,LI Jianlin,et al. Degradation mechanism of intermittent jointed sandstone under water-rock interaction[J]. Chinese Journal of Geotechnical Engineering,2021,43(4):634−643. doi: 10.11779/CJGE202104005

    [5] 张萍,杨春和,汪虎,等. 页岩单轴压缩应力-应变特征及能量各向异性[J]. 岩土力学,2018,39(6):2106−2114.

    ZHANG Ping,YANG Chunhe,WANG Hu,et al. Stress-strain characteristics and anisotropy energy of shale under uniaxial compression[J]. Rock and Soil Mechanics,2018,39(6):2106−2114.

    [6] 刘运思,王世鸣,颜世军,等. 基于声发射实验层状砂岩力学特性及破坏机理[J]. 中南大学学报(自然科学版),2019,50(6):1419−1427. doi: 10.11817/j.issn.1672-7207.2019.06.021

    LIU Yunsi,WANG Shiming,YAN Shijun,et al. Properties and failure mechanism of layered sandstone based on acoustic emission experiments[J]. Journal of Central South University (Science and Technology),2019,50(6):1419−1427. doi: 10.11817/j.issn.1672-7207.2019.06.021

    [7] 邓华锋,潘登,许晓亮,等. 三轴压缩作用下断续节理砂岩力学特性研究[J]. 岩土工程学报,2019,41(11):2133−2141. doi: 10.11779/CJGE201911020

    DENG Huafeng,PAN Deng,XU Xiaoliang,et al. Mechanical characteristics of intermittent jointed sandstone under triaxial compression[J]. Chinese Journal of Geotechnical Engineering,2019,41(11):2133−2141. doi: 10.11779/CJGE201911020

    [8] 廖安杰,孟陆波,李天斌,等. 热–力作用下层状砂岩各向异性三轴压缩试验研究[J]. 岩石力学与工程学报,2019,38(S1):2593−2602.

    LIAO Anjie,MENG Lubo,LI Tianbin,et al. Experimental study on anisotropic layered sandstone under the thermal-mechanical action[J]. Chinese Journal of Rock Mechanics and Engineering,2019,38(S1):2593−2602.

    [9]

    ZHANG Qiangui,FAN Xiangyu,CHEN Ping,et al. Geomechanical behaviors of shale after water absorption considering the combined effect of anisotropy and hydration[J]. Engineering Geology,2020,269:105547 doi: 10.1016/j.enggeo.2020.105547

    [10] 衡帅,杨春和,曾义金,等. 基于直剪试验的页岩强度各向异性研究[J]. 岩石力学与工程学报,2014,33(5):874−883.

    HENG Shuai,YANG Chunhe,ZENG Yijin,et al. Anisotropy of shear strength of shale based on direct shear test[J]. Chinese Journal of Rock Mechanics and Engineering,2014,33(5):874−883.

    [11]

    HENG S,GUO Y T,YANG C H,et al. Experimental and theoretical study of the anisotropic properties of shale[J]. International Journal of Rock Mechanics and Mining Sciences,2015,74:58−68. doi: 10.1016/j.ijrmms.2015.01.003

    [12]

    LU H J,XIE H P,LUO Y,et al. Failure characterization of Longmaxi shale under direct shear mode loadings[J]. International Journal of Rock Mechanics and Mining Sciences,2021,148:104936. doi: 10.1016/j.ijrmms.2021.104936

    [13]

    WANG P T,REN F H,MIAO S J,et al. Evaluation of the anisotropy and directionality of a jointed rock mass under numerical direct shear tests[J]. Engineering Geology,2017,225:29−41. doi: 10.1016/j.enggeo.2017.03.004

    [14]

    FU P C,DAFALIAS Y F. Study of anisotropic shear strength of granular materials using DEM simulation[J]. International Journal for Numerical and Analytical Methods in Geomechanics,2011,35(10):1098−1126. doi: 10.1002/nag.945

    [15]

    TONG Z X,FU P C,ZHOU S P,et al. Experimental investigation of shear strength of sands with inherent fabric anisotropy[J]. Acta Geotechnica,2014,9(2):257−275. doi: 10.1007/s11440-014-0303-6

    [16] 刘伟,曾亚武,夏磊,等. 正反向直剪下层状岩体强度和破坏特征模型试验[J]. 武汉大学学报(工学版),2019,52(7):600−609.

    LIU Wei,ZENG Yawu,XIA Lei,et al. Model tests for strength and failure characteristics of forward and reverse shear rock masses[J]. Engineering Journal of Wuhan University,2019,52(7):600−609.

    [17] 叶海旺,潘俊锋,雷涛,等. 基于PFC的层状板岩巴西劈裂渐进破坏能量分析[J]. 矿业研究与开发,2018,38(7):38−42.

    YE Haiwang,PAN Junfeng,LEI Tao,et al. Analysis of energy and split progressive failure process of layered slate based on particle flow code[J]. Mining Research and Development,2018,38(7):38−42.

    [18] 殷鹏飞,杨圣奇,高峰,等. 不同节理模型在层状复合岩石离散元模拟中的应用[J]. 采矿与安全工程学报,2023,40(1):164−173,183.

    YIN Pengfei,YANG Shengqi,GAO Feng,et al. Application of different joint models in stratified composite rock DEM simulation[J]. Journal of Mining & Safety Engineering,2023,40(1):164−173,183.

    [19]

    AGGELIS D G. Classification of cracking mode in concrete by acoustic emission parameters[J]. Mechanics Research Communications,2011,38(3):153−157. doi: 10.1016/j.mechrescom.2011.03.007

    [20] 甘一雄,吴顺川,任义,等. 基于声发射上升时间/振幅与平均频率值的花岗岩劈裂破坏评价指标研究[J]. 岩土力学,2020,41(7):2324−2332.

    GAN Yixiong,WU Shunchuan,REN Yi,et al. Evaluation indexes of granite splitting failure based on RA and AF of AE parameters[J]. Rock and Soil Mechanics,2020,41(7):2324−2332.

    [21] 王聚贤,梁鹏,张艳博,等. 基于声发射RA-AF值与kneedle算法的岩石拉剪破裂分类研究[J]. 岩石力学与工程学报,2024,43(S1):3267−3279.

    WANG Juxian,LIANG Peng,ZHANG Yanbo,et al. Classification of rock tensile-shear fracture based on acoustic emission RA-AF value and kneedle algorithm[J]. Chinese Journal of Rock Mechanics and Engineering,2024,43(S1):3267−3279.

  • 期刊类型引用(34)

    1. 董书宁,于树江,董兴玲,张步勤,郭小铭,王晓东,王凯,朱世彬,武博强,刘磊. 煤基固废与高盐废水“固液协同”充填处置关键技术. 煤田地质与勘探. 2025(01): 163-173 . 百度学术
    2. 郭文兵,胡玉杭,胡超群,李龙翔,吴东涛,葛志博. 我国“三下”采煤技术体系与工程实践. 煤炭科学技术. 2025(01): 19-38 . 本站查看
    3. 常庆粮,高乐,范建国,张彪,孙聪,胡盼. 深井厚煤层多分层充填体-围岩协同承载机理. 采矿与安全工程学报. 2025(03): 510-520 . 百度学术
    4. 吴建华,李玉增,王壮. 连采连充膏体充填工艺系统设计与应用. 煤炭工程. 2024(01): 8-13 . 百度学术
    5. 焦方树,张新国,范亚奇. 厚煤层膏体分层充填开采地表移动变形规律研究. 煤炭技术. 2024(05): 24-28 . 百度学术
    6. 杨科,何淑欣,何祥,初茉,周伟,袁宁,陈登红,龚鹏,张元春. 煤电化基地大宗固废“三化”协同利用基础与技术. 煤炭科学技术. 2024(04): 69-82 . 本站查看
    7. 张付强,程立群,于良. 厚煤层分层开采下膏体充填置换开采技术可行性研究. 现代矿业. 2024(04): 95-98 . 百度学术
    8. 齐红霞,赵庆新,张庆超,冯国力,严红. 纤维增强尾砂充填体强度机制及关键影响因素研究. 矿业研究与开发. 2024(06): 121-127 . 百度学术
    9. 顾伟,王允卿. 厚硬覆岩下巨厚煤层开采转角塔塔线体稳定性演化特征研究. 采矿与安全工程学报. 2024(04): 730-740 . 百度学术
    10. 陈广鑫. 三下采煤膏体充填开采技术分析. 设备管理与维修. 2024(12): 164-166 . 百度学术
    11. 魏帅,贾建伟,梁大海. 宽煤柱窄条带点柱式充填开采技术与实践. 中国矿业. 2024(07): 208-215 . 百度学术
    12. 安百富,易巧梅,赵祥,余伟健,王栋达,王家乐. 煤泥基充填材料流动性与强度特性试验研究. 煤炭科学技术. 2024(S1): 13-21 . 本站查看
    13. 孙希奎,范建国,常庆粮. 浅埋特厚煤层下向分层膏体充填开采覆岩变形控制机理. 绿色矿山. 2024(03): 221-233 . 百度学术
    14. 曹连民,张德抗,赵东瑞,陈懿璇,朱明星. 膏体充填支架液压控制系统特性分析. 机床与液压. 2024(19): 141-145 . 百度学术
    15. 陈启渐,吴锐. 综采面条带式充填开采覆岩运移规律及稳定性控制. 江西冶金. 2024(05): 320-326 . 百度学术
    16. 李瑞兴. 8318工作面无煤柱充填采煤工艺设计及试验. 山东煤炭科技. 2023(01): 87-89 . 百度学术
    17. 蔡晓敏,成超. 改进雷达安装结构在膏体智能充填的应用. 机械管理开发. 2023(03): 98-100 . 百度学术
    18. 李伟,牛丽菊,冉德旺. 膏体充填站智能化控制与安全生产技术. 内蒙古煤炭经济. 2023(06): 101-103 . 百度学术
    19. 李亚娇,鱼郑,鞠恺,任武昂,唐仁龙,金鹏康. 粉煤灰基膏体充填脱氨方法研究综述. 煤炭科学技术. 2023(06): 265-274 . 本站查看
    20. 杨飞. 无煤柱充填采煤工艺设计及试验. 山西化工. 2023(06): 164-165+168 . 百度学术
    21. 韩崇刚. “双碳”目标下煤基固废高值化处理与综合利用研究. 煤炭经济研究. 2023(12): 30-35 . 百度学术
    22. 冯国瑞,白锦文,马俊彪,郭军,潘瑞凯,王凯,宋诚. 残采区群柱遗煤资源绿色开采与地下空间开发技术挑战. 绿色矿山. 2023(01): 91-100 . 百度学术
    23. 杨博. 煤矿固体废弃物膏体充填技术分析. 当代化工研究. 2022(04): 99-101 . 百度学术
    24. 吴季洪. 我国充填开采技术发展现状与展望. 山西焦煤科技. 2022(01): 7-11 . 百度学术
    25. 陈程. 麻家梁矿四采区膏体充填开采系统设计研究与应用. 煤. 2022(03): 56-57+60 . 百度学术
    26. 李宇宸,朱晓峻,刘辉. 采煤沉陷区建筑地基稳定性分析方法对比研究. 煤炭科学技术. 2022(04): 229-235 . 本站查看
    27. 王永岩,于卓群,崔立桩. 不同含水率膏体充填材料的单轴压缩试验研究. 煤炭科学技术. 2022(06): 219-224 . 本站查看
    28. 李鹤鹤,冀宇鑫,宋高峰. 基于弹性地基梁理论的端面顶板稳定性分析. 科学技术与工程. 2022(30): 13234-13241 . 百度学术
    29. 陈路. 探讨膏体充填开采技术在煤矿采空区的应用. 当代化工研究. 2022(21): 117-119 . 百度学术
    30. 杨科,赵新元,何祥,魏祯. 多源煤基固废绿色充填基础理论与技术体系. 煤炭学报. 2022(12): 4201-4216 . 百度学术
    31. 王虎伟. 常村煤矿CTN3-01工作面膏体充填开采技术应用与研究. 煤. 2021(09): 85-88 . 百度学术
    32. 段圆圆,李绪萍,刘艳青,徐荣斌. 煤矿采空区膏体充填相关技术研究. 现代矿业. 2021(06): 83-85 . 百度学术
    33. 李鹤鹤,冀宇鑫,宋高峰. 充填开采工作面围岩应力分布及岩层移动研究. 煤炭与化工. 2021(09): 7-9+13 . 百度学术
    34. 田镜楷. 高承压工作面膏体充填开采技术应用研究. 山东煤炭科技. 2021(11): 205-206+209 . 百度学术

    其他类型引用(22)

图(10)  /  表(4)
计量
  • 文章访问数:  84
  • HTML全文浏览量:  9
  • PDF下载量:  24
  • 被引次数: 56
出版历程
  • 收稿日期:  2024-02-02
  • 网络出版日期:  2024-06-21
  • 刊出日期:  2024-06-24

目录

    /

    返回文章
    返回