高级检索

矿井智能通风与关键技术研究

张浪, 刘彦青

张 浪,刘彦青. 矿井智能通风与关键技术研究[J]. 煤炭科学技术,2024,52(1):178−195

. DOI: 10.12438/cst.2023-1987
引用本文:

张 浪,刘彦青. 矿井智能通风与关键技术研究[J]. 煤炭科学技术,2024,52(1):178−195

. DOI: 10.12438/cst.2023-1987

ZHANG Lang,LIU Yanqing. Research on technology of key steps of intelligent ventilation in mines[J]. Coal Science and Technology,2024,52(1):178−195

. DOI: 10.12438/cst.2023-1987
Citation:

ZHANG Lang,LIU Yanqing. Research on technology of key steps of intelligent ventilation in mines[J]. Coal Science and Technology,2024,52(1):178−195

. DOI: 10.12438/cst.2023-1987

矿井智能通风与关键技术研究

基金项目: 

中国煤炭科工集团科技创新创业基金资助项目(2021-2-TD-ZD005)

详细信息
    作者简介:

    张浪: (1978—),男,内蒙古乌兰察布人,研究员。E-mail:Lnzhanglang@163.com

  • 中图分类号: TD724

Research on technology of key steps of intelligent ventilation in mines

Funds: 

Science and Technology Innovation and Entrepreneurship Fund of China Coal Technology and Engineering Group (2021-2-TD-ZD005)

  • 摘要:

    为使智能通风系统建设更加有序、可控,提出了矿井智能通风流程环节,将矿井智能通风流程按照生产环节划分为6个板块,即感知监测、分析诊断、智能决策、方案审批、远程集控联控、执行反馈,共包含24个具体环节,建立了各个环节输入输出要素和环节之间的功能逻辑关系。按照“矿井通风系统整体规划+采掘用风区域重点细化”思路,提出了矿井全系统智能通风应用场景实现方案和采煤工作面与掘进工作面2个细化的智能通风应用场景实现方案,将矿井智能通风各个具体环节融入具体的应用场景中。为实现智能通风应用场景,基于逻辑分层思想优化了矿井智能通风系统整体架构,规划了由硬件驱动层、功能模块层、计算处理层、数据存储层、数据采集层构成的矿井智能通风管控平台。针对通风感知监测、分析诊断、智能决策、远程集控联控4个矿井智能通风关键板块中涉及的风量风速监测感知、通风阻力在线监测、全风网风量风压解算、灾源判识和灾变定位、矿井动态需风量计算、通风系统故障诊断、风量按需调控方案决策、应急控风方案决策、无人化远程控风、无人化应急控风10个关键环节,总结分析了目前各个关键环节关键技术现状,提出了各个关键环节关键技术实现路径,通过关键技术迭代升级,最终实现矿井通风系统全生命周期内时刻处于稳定可靠、安全可控、高效节能、应急降灾的运行状态。

    Abstract:

    The process steps of intelligent ventilation in mines were proposed, which could make the ventilation system more orderly and controllable. The process of intelligent ventilation in mines was divided into six process sections according to the production process, namely perception monitoring, analysis and diagnosis, intelligent decision-making, scheme approval, remote centralized control and joint control, and execution feedback, which included a total of 24 specific process steps. The input and output elements of each process step and the functional logical relationship between the process steps were clarified. According to the concept of “overall plan of the mine ventilation system+key refinement of the mining air area”, the scheme for implementing the intelligent ventilation process of the entire mine system and two refined intelligent ventilation process application scenarios for the coal mining and excavation working faces were proposed. The intelligent ventilation process steps of the mine were integrated into specific application scenarios. In order to achieve intelligent ventilation application scenarios, the overall architecture of the mine intelligent ventilation system was optimized based on the logical layering concept. The mine intelligent ventilation control platform consisting of hardware driver layer, functional module layer, computing processing layer, data storage layer, and data acquisition layer was planned and designed. The four key process sections of intelligent ventilation involved ten key process sections,which were ventilation perception monitoring, analysis and diagnosis, intelligent decision-making, remote centralized control and joint control. The ten key process steps included monitoring and perception of air volume and wind speed, online monitoring of ventilation resistance, analysis of air volume and pressure in the entire air network, identification and identification of disaster sources, calculation of dynamic air demand in mines, diagnosis of ventilation system faults, decision-making of on-demand air volume control plans, decision-making of emergency air control plans, unmanned remote air control, and unmanned emergency air control. The current technological status of the ten key process steps were summarized and analyzed, and the technical implementation paths for the ten key process steps were proposed. Through iterative upgrades of various intelligent ventilation key technologies, the mine ventilation system was ultimately achieved to be in the stable, reliable, safe, controllable, efficient, energy-saving, and emergency disaster reduction operation state throughout its entire lifecycle.

  • 图  1   矿井智能通风系统流程环节逻辑关系

    Figure  1.   Logical relationship between process links of mine intelligent ventilation system

    图  5   矿井智能通风系统架构

    Figure  5.   Overall architecture of intelligent ventilation system

    图  6   通风智能决策分析平台架构

    Figure  6.   Architecture of ventilation intelligent decision analysis platform

    图  7   巷道平均风速区域(绿色区域)与风速监测九点布置位置[11]

    Figure  7.   Average wind speed area of roadway (the green area ) and nine-point arrangement of wind speed monitoring[11]

    图  8   全断面多点移动式全自动测风系统[11]

    Figure  8.   Full-section multi-point mobile automatic wind measurement system[11]

    图  9   全断面扫描式全自动测风系统

    Figure  9.   Full-section scanning automatic wind measurement system

    图  10   矿井通风阻力在线监测原理示意

    Figure  10.   Schematic of principle of online monitoring of mine ventilation resistance

    图  11   火灾风流模拟多物理场耦合模型

    Figure  11.   Multiphysics coupling model for fire wind flow simulation

    图  12   通风网络火灾风流模拟解算流程

    Figure  12.   Simulation process of fire air flow in ventilation network

    图  13   矿井分区域控风方案自主决策流程

    Figure  13.   Independent decision-making process of mine sub-regional wind control scheme

    图  14   调节风窗过风面积–等效风阻数学模型构建流程[44]

    Figure  14.   Building process of mathematical model of automatic adjustment of wind area of wind window and equivalent wind resistance[44]

    图  15   基于自动风窗的多用风地点风量在线调控实现流程[45]

    Figure  15.   Implementation process of online air volume control of multi-purpose air location based on automatic air window[45]

    图  16   智能局部通风控制系统功能设计

    Figure  16.   Functional design of intelligent local ventilation control system

    图  17   采煤工作面一键反风降灾减灾应急系统

    Figure  17.   Local anti-wind system of coal mining face with disaster mitigation and mitigation effect

    图  18   回风立井抗冲击自动复位式风井防爆门

    Figure  18.   Impact-resistant self-resetting blowshaft explosion-proof door for return air shaft

    图  19   自动复位式抗冲击远程快速密闭

    Figure  19.   Fast sealing with auto-reset and impact-resistant remote functions

    表  1   矿井智能通风系统流程环节信息汇总

    Table  1   Summary of process information of mine intelligent ventilation system

    板块 环节 各环节主要执行内容 环节输入 环节输出
    感知
    监测
    通风设备状态全面监测 ①智能通风设备运行状态数据采集,实现通风设备原始状态数据的全方位采集;②智能通风设备运行状态数据清洗,实现通风设备关键状态信息提取与滤波降噪 ①设备网络通信状态;②设备通风工况状态参数;③设备机电工况状态参数
    瓦斯无人
    巡检
    ①瓦斯体积分数监测数据采集;②瓦斯体积分数监测数据清洗 巷道瓦斯体积分数准确监测值
    矿井风量风速监测 ①风速风量监测数据采集;②风速风量监测数据清洗 巷道实时风速、风量
    矿井通风阻力监测 ①矿井通风阻力基础数据监测采集;②矿井通风阻力基础数据清洗 矿井通风阻力基础参数值
    灾变信息
    感知
    ①风流温度、风流方向、风流组分监测数据采集;②风流温度、风流组分监测数据清洗 巷道风流温度、风流组分、风流是否逆转
    解算分析诊断 通风系统故障诊断 ①设备故障超前预警或及时报警,自动给出故障解决建议;②通风网络阻变型故障快速诊断与定位 ①设备网络通信状态;②设备通风工况状态参数;③设备机电工况状态参数;④通风网络风量风压数据 ①设备运行状态是否正常,如有故障,明确设备故障类型与故障原因;②通风网络是否存在阻变型故障,明确故障位置与故障
    原因
    矿井风量风速预警分析 按照《煤矿安全规程》中巷道风速、粉尘质量浓度、瓦斯体积分数、二氧化碳浓度等通风相关要求,验证风量风速安全性 ①矿井所有巷道动态需风量区间范围值;②矿井所有巷道实时风量、风速数据 明确给出待调节风量巷道,及风量调节目标值
    矿井动态需风量计算 参照AQ1056—2008《煤矿通风能力核定标准》中规定各类用风地点需风量计算办法,进行需风量动态计算 ①获取巷道长度、断面积等巷道信息;②获取瓦斯、二氧化碳等有毒有害气体浓度动态信息;③从数据中台获取人员、车辆动态信息;④获取巷道风流温度等环境气候条件动态信息 矿井所有巷道动态需风量范围值
    灾源与灾变区域辨识 基于灾变感知信息,采用人工智能算法或者灾变风流模拟技术进行快速自动模拟反演灾变演化过程与趋势 输入部分巷道风流温度、气体组分、
    粉尘质量浓度、冲击波破坏范围与
    破坏强度
    ①输出灾源位置(具体巷道分支);②输出灾变影响区域(具体矿井区域范围)
    矿井全风网风量风压实时解算 ①矿井通风网络更新信息收集;②矿井通风网络解算模型更新;③矿井通风网络实时解算 ①矿井巷道采掘信息;②数量有限的巷道分支实时风速、风量数据;③矿井通风阻力基础参数值 ①矿井所有巷道实时风量和风速数据;②矿井所有巷道风压和通风阻力数据
    矿井通风阻力与风量匹配分析 按照AQ1028—2006《煤矿井工开采通风技术条件》中矿井通风阻力相关规定,进行矿井通风阻力与风量定量化匹配性分析 ①矿井总风量数据;②矿井通风阻力基础参数数据 ①实时矿井通风阻力值;②矿井通风阻力与矿井总风量是否匹配,如不匹配,给出矿井通风阻力优化目标区间值
    灾变预警与报警分析 ①灾变预警与报警级别划分;②定量模拟灾变动态演化过程和发展趋势 ①灾源位置(具体巷道分支);②灾变影响区域(具体矿井区域) ①矿井各巷道灾变预警报警级别;②灾变影响区域发展演化过程
    智能辅助决策 矿井风量按需调控方案决策 采用人工智能算法或直接解算算法对按需供风非线性规划问题进行求解,求解结果满足以下四方面要求①矿井各用风点满足需风量要求;②矿井各用风点满足风速要求;③矿井通风系统满足合理功耗要求;④矿井通风阻力与总风量满足匹配要求 ①需进行调节风量巷道,及巷道风量调节目标值;②风量风速预警报警巷道应急需风量区间及应急调节风量目标值 ①给出矿井通风系统调节方案决策结果;②给出多系统联动调控方案决策结果,涉及其他系统联动调控内容
    避灾路线
    规划
    根据灾情演变情况,划分矿井灾变影响区域,根据巷道坡度、温湿度、光线等因素,按区域动态生成最佳避灾路线 ①从数据中台获取井下人员信息;②灾源位置(具体巷道分支)、灾变影响区域
    (具体矿井区域);③灾变影响区域发展演化过程
    显示与发布人员避灾逃生路线
    矿井应急控风方案决策 井下远程快速密闭等设施优先调节,主通风机应急调控置后,实现灾变有毒有害气体不侵入人员集中区域,快速排出矿井,同时对采掘系统造成损坏最小 ①灾源位置(具体巷道分支);②灾变影响区域(具体矿井区域);③设备故障诊断信息;④通风阻变故障诊断信息 ①矿井应急控风方案结果;②多系统联动调控方案决策结果;
    ③通风系统故障处置方案
    方案审批授权 矿井通风系统调控方案审批 从人员调度管理、外部政策多个方面分析调控方案的合理性 ①矿井通风系统调节方案决策结果;②多系统联动调控方案决策结果涉及通风系统调整内容 审批通过的矿井通风系统调整
    方案
    通风设备远程集控指令审批 从人员调度管理、外部政策多个方面分析调控方案的合理性 向管控平台提交的通风设备远程集控
    指令
    审批通过的通风设备远程集控
    指令
    矿井应急控风方案审批 从人员、物资、设备等救援调度多个方面分析应急控风方案合理性 ①矿井应急控风方案结果;②多系统联动调控方案决策结果 审批通过的矿井应急控风方案
    远程集控联控 矿井通风
    系统调控
    方案远程
    自动执行
    ①通风动力目标工况自动调节执行;②通风设施目标工况自动调节执行 审批通过的矿井通风系统调整方案 通风动力和通风设施目标工况调节是否完成
    通风设备远程集控自动执行 ①主通风机反风演习、定期切换等;②局部通风机日常切换等;③风门远程解闭锁试验等 ①通风设备故障诊断结果;②管控平台下发通过审批的远控指令 通风动力和通风设施是否完成指令执行要求
    矿井应急控风方案远程执行 ①自动控制风门远控解闭锁并全部打开;②防火门远控关闭;③快速密闭远控关闭 审批通过的矿井应急控风方案 ①自动控制风门远控解闭锁完成情况;②防火门远控关闭完成情况;③快速密闭远控关闭;④人员位置信息
    执行反馈评估 通风设备集控执行效果评估 按照通风设备运维管理要求和《煤矿安全规程》等规程规范,对通风设备集控功能进行日常测试检验 通风动力和通风设施完成指令执行要求之后,通风设备的运行状态和集控指令执行情况 ①设备是否处于正常待机状态;②设备常规功能是否能够正常使用;③设备灾变应急功能是否能够正常使用
    矿井风量
    按需调控
    方案执行
    效果评估
    调控方案执行后,获取矿井风量、风速、通风阻力监测数据 ①是否达到风量调节目标值;②矿井通风阻力与总风量匹配程度;③定量评估方案执行后通风实际能耗
    矿井应急控风方案执行效果评估 应急控风方案执行后,获取矿井通风系统灾变信息监测数据、人员位置信息 ①明确灾变区域是否缩减或消失;②明确灾变有毒有害气体是否排出矿井;③明确人员安全撤离情况
    下载: 导出CSV
  • [1] 王国法. 煤矿智能化最新技术进展与问题探讨[J]. 煤炭科学技术,2022,50(1):1−27.

    WANG Guofa. Discussion on lastest technological progress and problems of coal mine intelligence[J]. Coal Science and Technology,2022,50(1):1−27.

    [2] 王国法,王 虹,任怀伟,等. 智慧煤矿2025情景目标和发展路径[J]. 煤炭学报,2018,43(2):295–305.

    WANG Guofa,WANG Hong,REN Huaiwei,et al. 2025 scenarios and development path of intelligent coal mine[J]. Journal of China Coal Society,2018,43(2):295–305.

    [3] 卢新明,尹 红. 矿井通风智能化理论与技术[J]. 煤炭学报,2020,45(6):2236−2247.

    LU Xinming,YIN Hong. The intelligent theory and technology of mine ventilation[J]. Journal of China Coal Society,2020,45(6):2236−2247.

    [4] 周福宝,辛海会,魏连江,等. 矿井智能通风理论与技术研究进展[J]. 煤炭科学技术,2023,51(1):313−328.

    ZHOU Fubao,XIN Haihui,WEI Lianjiang,et al. Research progress of mine intelligent ventilation theory and technology[J]. Coal Science and Technology,2023,51(1):313−328.

    [5] 刘 剑. 矿井智能通风关键科学技术问题综述[J]. 煤矿安全,2020,51(10):108−111,117.

    LIU Jian. Overview on key scientific and technical issues of mine intelligent ventilation[J]. Safety in Coal Mines,2020,51(10):108−111,117.

    [6] 张庆华,姚亚虎,赵吉玉. 我国矿井通风技术现状及智能化发展展望[J]. 煤炭科学技术,2020,48(2):97−103.

    ZHANG Qinghua,YAO Yahu,ZHAO Jiyu. Status of mine ventilation technology in China and prospects for intelligent development[J]. Coal Science and Technology,2020,48(2):97−103.

    [7] 刘 剑,李雪冰,宋 莹,等. 无外部扰动的均直巷道风速和风压测不准机理实验研究[J]. 煤炭学报,2016,41(6):1447−1453.

    LIU Jian,LI Xuebing,SONG Ying,et al. Experiment study on uncertainty mechanism of mine air velocity and pressure with non-external disturbances[J]. Journal of China Coal Society,2016,41(6):1447−1453.

    [8] 刘 剑,李雪冰,高 科,等. 井巷风速单点测试方法及其可行性研究[J]. 中国安全生产科学技术,2016,12(8):23−27.

    LIU Jian,LI Xuebing,GAO Ke,et al. Study on single-point measurement method of roadway air velocity and its feasibility[J]. Journal of Safety Science and Technology,2016,12(8):23−27.

    [9] 张 浪. 巷道测风站风速传感器平均风速测定位置优化研究[J]. 煤炭科学技术,2018,46(3):96−102.

    ZHANG Lang. Optimized study on location to measure average air velocity with air velocity sensor in wind measuring station of underground mine[J]. Coal Science and Technology,2018,46(3):96−102.

    [10] 卞 欢,刘 剑,刘 学,等. 基于GA–BP神经网络的巷道平均风速单点测试研究[J]. 中国安全生产科学技术,2023,19(5):57−64.

    BIAN Huan,LIU Jian,LIU Xue,et al. Research on single point test of average wind speed in roadway based on GA–BP neural network[J]. Journal of Safety Science and Technology,2023,19(5):57−64.

    [11] 孙永新,张 浪,杨 旭,等. 巷道风量全自动在线测试装置研制与应用[J]. 煤矿安全,2022,53(9):251–256.

    SUN Yongxin,ZHANG Lang,YANG Xu,et al. Development and application of automatic on-line measuring Device for roadway air volume[J]. Safety in Coal Mines,2022,53(9):251–256.

    [12] 刘 剑,李雪冰,陈廷凯,等. 矿井定常湍流脉动对通风阻力测试影响的理论分析[J]. 中国安全生产科学技术,2016,12(5):22−25.

    LIU Jian,LI Xuebing,CHEN Tingkai,et al. Theoretical analysis on influence of steady turbulence fluctuation on ventilation resistance measurement in mine[J]. Journal of Safety Science and Technology,2016,12(5):22−25.

    [13] 赵 丹,沈志远,宋子豪,等. 智能通风矿井风速传感器数据清洗模型[J]. 中国安全科学学报,2023,33(9):56−62.

    ZHAO Dan,SHEN Zhiyuan,SONG Zihao,et al. Mine airflow speed sensor data cleaning model for intelligent ventilation[J]. China Safety Science Journal,2023,33(9):56−62.

    [14] 张 巍,李雨成,张 欢,等. 面向通风智能化的风速传感器结构化数据降噪方法对比[J]. 中国安全生产科学技术,2021,17(8):70−76.

    ZHANG Wei,LI Yucheng,ZHANG Huan,et al. Comparison of structured data noise reduction methods for airflow speed sensor of intelligent ventilation[J]. Journal of Safety Science and Technology,2021,17(8):70−76.

    [15] 李 伟,霍永金,张 浪,等. 矿井通风实时网络解算技术研究[J]. 中国矿业,2016,25(3):167−170.

    LI Wei,HUO Yongjin,ZHANG Lang,et al. Research on ventilation real time network solution[J]. China Mining Magazine,2016,25(3):167−170.

    [16] 罗 广,邹银辉,宁小亮,等. 矿井通风网络在线监测技术研究与应用[J]. 矿业安全与环保,2019,46(5):47−50,55.

    LUO Guang,ZOU Yinhui,NING Xiaoliang,et al. Research and application of online monitoring technology for mine ventilation network[J]. Mining Safety & Environmental Protection,2019,46(5):47−50,55.

    [17] 宋 涛,王建文,吴奉亮,等. 基于超声波全断面测风的矿井风网实时解算方法[J]. 工矿自动化. 2022,48(4):114–120,141.

    SONG Tao,WANG Jianwen,WU Fengliang,et al. Real-time calculation method of mine ventilation network based on ultrasonic full-section wind measurement[J]. Journal of Mine Automation,2022,48(4):114–120,141.

    [18] 谈国文. 复杂矿井通风网络可视化动态解算及预警技术[J]. 工矿自动化,2020,46(2):6−11.

    TAN Guowen. Visualized dynamic solution and early warning technology for ventialtion network complex min[J]. Journal of Mine Automation,2020,46(2):6−11.

    [19] 李亚俊,吴洁葵,李印洪,等. 基于最小生成树原理的矿井通风网络监测布局优化[J]. 矿业研究与开发,2021,41(7):172–175.

    LI Yajun,WU Jiekui,LI Yinhong,et al. Optimization on monitoring layout of mine ventilation network based on the principle of minimum spanning tree[J]. Mining Research and Development,2021,41(7):172–175.

    [20] 陈开岩,周福宝,夏同强,等. 基于空气状态参数与风量耦合迭代的风网解算方法[J]. 中国矿业大学学报,2021,50(4):613−623.

    CHEN Kaiyan,ZHOU Fubao,XIA Tongqiang,et al. Ventilaiton network solution method based on coupling iteration of air state parameters and air quantity[J]. Journal of China University of Mining & Technology,2021,50(4):613−623.

    [21] 吴 兵,赵晨光,雷柏伟. 巷道摩擦风阻粗糙表面分形表征及计算方法[J]. 中国矿业大学学报,2021,50(4):633–640.

    WU Bing,ZHAO Chenguang,LEI Baiwei. Characterization and calculation and calculation method of friction resistance based on fractal theory of roadway rough surface[J]. Journal of China University of Mining & Technology,2021,50(4):633–640.

    [22] 刘彦青. 基于巷道摩擦阻力系数 BP 神经网络预测模型的矿井风网风量预测研究[J]. 矿业安全与环保,2021,48(2):101−106.

    LIU Yanqing. Study on the air quantity of mine ventilation network based on BP neural network prediction model of friction resistance coefficient in roadway[J]. Mining Safety & Environmental Protection,2021,48(2):101−106.

    [23] 戚志鹏,高 科,刘玉姣,等. 巷道通风摩擦阻力系数遗传投影寻踪回归预测[J/OL]. 安全与环境学报:1−10 [2023−12−10]. https://doi.org/10.13637/j.issn.1009–6094.2023.1603.

    QI Zhipeng,GAO Ke,LIU Yujiao,et al. Ventilation resistance coefficient prediction of tunnels based on GA-projection pursuit regression[J/OL]. Journal of Safety and Environment:1−10 [2023−12−10] https://doi.org/10.13637/j.issn.1009–6094.2023.1603.

    [24] 李翠平,曹志国,钟 媛. 矿井火灾的场量模型构建及其可视化仿真[J]. 煤炭学报,2015,40(4):902−908.

    LI Cuiping,CAO Zhiguo,ZHONG Yuan. Field variables modeling and visualization simulation of fire disaster in underground mine[J]. Journal of China Coal Society,2015,40(4):902−908.

    [25] 张景钢,孙春峰,张海洋,等. 矿井火灾模拟解算软件开发研究[J]. 华北科技学院学报,2015,12(1):30−35.

    ZHANG Jingang,SUN Chunfeng,ZHANG Haiyang,et al. Development and research of simulation calculating software of mine fire simulation[J]. Journal of North China Institute of Science and Technology,2015,12(1):30−35.

    [26] 郝海清,王 凯,张春玉,等. 矿井皮带巷火灾风烟流场–区–网演化与调控规律[J]. 中国矿业大学学报,2021,50(4):716−724.

    HAO Haiqing,WANG Kai,ZHANG Chunyu,et al. Evolution and regulation law of wind and smoke flow field area network in mine belt roadway fire[J]. Journal of China University of Mining & Technology,2021,50(4):716−724.

    [27] 董铭鑫,赵东风,尹法波,等. 通风管网中瓦斯爆炸火焰波传播特性三维数值模拟[J]. 煤炭学报,2020,45(S1):291−299.

    DONG Mingxin,ZHAO Dongfeng,YIN Fabo,et al. Flame propagation characteristics of gas explosion in 3D ventilation pipe network by numerical simulation[J]. Journal of China Coal Society,2020,45(S1):291−299.

    [28] 孟亦飞,董铭鑫,赵东风,等. 大尺寸通风管网中障碍物对瓦斯爆炸冲击波传播特性影响的数值模拟[J]. 中国安全生产科学技术,2019,15(2):99−104.

    MENG Yifei,DONG Mingxin,ZHAO Dongfeng,et al. Numerical simulation on influence of obstacle on propagation characteristics of shock wave caused by gas explosion in large size ventilation pipe network[J]. Journal of Safety Science and Technology,2019,15(2):99−104.

    [29] 刘 剑,曲 敏,黄 德,等. 应急状态下矿井瓦斯爆炸致灾因子传播快速分类器研究[J]. 中国安全生产科学技术,2020,16(8):11−17.

    LIU Jian,QU Min,HUANG De,et al. Research on fast classifier for propagation of hazard factors in mine gas explosion under emergency state[J]. Journal of Safety Science and Technology,2020,16(8):11−17.

    [30] 刘 剑,蒋清华,刘 丽,等. 矿井通风系统阻变型故障诊断及风速传感器位置优化[J]. 煤炭学报,2021,46(6):1907−1914.

    LIU Jian,JIANG Qinghua,LIU Li,et al. Resistance variant fault diagnosis of mine ventilation system and position optimization of wind speed sensor[J]. Journal of China Coal Society,2021,46(6):1907−1914.

    [31] 倪景峰,李 振,乐晓瑞,等. 基于随机森林的阻变型通风网络故障诊断方法[J]. 中国安全生产科学技术,2022,18(4):34−39.

    NI Jingfeng,LI Zhen,LE Xiaorui,et al. Resistance variant fault diagnosis method of ventilation network based on random forest[J]. Journal of Safety Science and Technology,2022,18(4):34−39.

    [32] 李秉芮,陈凤梅,刘 娜. 矿井通风系统异常诊断的方法研究[J]. 安全与环境学报,2022,22(5):2453−2460.

    LI Bingrui,CHEN Fengmei,LIU Na. Research on anomaly diagnosis method of mine ventilation system[J]. Journal of Safety and Environment,2022,22(5):2453−2460.

    [33] 张 浪,张迎辉,张逸斌,等. 基于机器学习的通风网络故障诊断方法研究[J]. 工矿自动化,2022,48(3):91−98.

    ZHANG Lang,ZHANG Yinghui,ZHANG Yibin,et al. Research on fault diagnosis method of ventilation network based on machine learning[J]. Journal of Mine Automation,2022,48(3):91−98.

    [34] 魏引尚,贾玉泉,王奕博,等. 矿井通风系统分级控制研究[J]. 工矿自动化,2018,44(12):30−33.

    WEI Yinshang,JIA Yuquan,WANG Yibo,et al. Research on garding control of mine ventilation system[J]. Industry and Mine Automation,2018,44(12):30−33.

    [35] 裴晓东,王 凯,李晓伟,等. 基于元胞自动机的集约化矿井调风模型分析与仿真[J]. 中国矿业大学学报,2017,46(4):755−761.

    PEI Xiaodong,WANG Kai,LI Xiaowei,et al. Analysis and simulaiton of intensive mine air regulation model based on the cellular automation[J]. Journal of China University of Mining & Technology,2017,46(4):755−761.

    [36] 吴新忠,韩正化,魏连江,等. 矿井风流智能按需调控算法与关键技术[J]. 中国矿业大学学报,2021,50(4):725−734.

    WU Xinzhong,HAN Zhenghua,WEI Lianjiang,et al. Intelligent on-demand regulation algorithm and key technology of mine air flow[J]. Journal of China University of Mining & Technology,2021,50(4):725−734.

    [37] 吴新忠,张芝超,王 凯,等. 基于DE–GWO算法的矿井风网风量调节方法[J]. 中南大学学报(自然科学版),2021,52(11):3981−3989.

    WU Xinzhong,ZHANG Zhichao,WANG Kai,et al. Method for adjusting air volume of mine ventilation network based on DE –GWO algorithm[J]. Journal of Central South University (Science and Technology),2021,52(11):3981−3989.

    [38] 任子晖,李 昂,吴新忠,等. 矿井通风网络风量智能调控研究[J]. 工矿自动化. 2022,48(11):110–118.

    REN Zihui,LI Ang,WU Xinzhong,et al. Research on intelligent control of air volume of mine ventilation network[J]. Journal of Mine Automation,2022,48(11):110–118.

    [39] 张智韬,李雨成,李俊桥,等. 智能通风精准调控系统架构及实现[J]. 煤炭学报,2023,48(4):1596−1605.

    ZHANG Zhitao,LI Yucheng,LI Junqiao,et al. Architecture and implementation of intelligent ventilation precise control system[J]. Journal of China Coal Society,2023,48(4):1596−1605.

    [40] 王 凯,郝海清,蒋曙光,等. 矿井火灾风烟流区域联动与智能调控系统研究[J]. 工矿自动化,2019,45(7):21−27.

    WANG Kai,HAO Haiqing,JIANG Shuguang,et al. Research on regional linkage and intelligent control system of mine fire winds moke flow[J]. Industry and Mine Automation,2019,45(7):21−27.

    [41] 王 凯,裴晓东,杨 涛,等. 矿井智能通风联动调控理论与供需匹配实验研究[J]. 工程科学学报,2023,45(7):1214−1224.

    WANG Kai1,PEI Xiaodong,YANG Tao,et al. Study on intelligent ventilation linkage control theory and supply-demand matching experiment in mines[J]. Chinese Journal of Engineering 2023,45(7):1214−1224.

    [42] 魏连江,周福宝,夏同强,等. 矿井智能通风与灾变应急决策平台[J]. 中国安全科学学报,2022,32(9):158−167.

    WEI Lianjiang,ZHOU Fubao,XIA Tongqiang,et al. Mine intelligent ventilation and disaster emergency decision platform[J]. China Safety Science Journal,2022,32(9):158−167.

    [43] 张 浪,姚海飞,李 伟,等. 矿井智能通风成套技术装备研究及应用[J]. 智能矿山,2022,3(6):71−79.

    ZHANG Lang,YAO Haifwei,LI Wei,et al. Research and application of mine intelligent ventilation technology and equipment[J]. Journal of Intelligent Mine,2022,3(6):71−79.

    [44] 尹 斌,刘彦青,李 伟,等. 矿用自动控制风窗局部风阻数值模拟[J]. 煤矿安全,2016,47(10):172−175.

    YIN Bin,LIU Yanqing,LI Wei,et al. Numerical simulation for local wind resistance of mine automatic control wind window[J]. Safety in Coal Mines,2016,47(10):172−175.

    [45] 杨 旭,张 浪,马 强,等. 多个采煤工作面风量按需动态联动调控系统[J]. 工矿自动化,2022,48(6):112−117.

    YANG Xu,ZHANG Lang,MA Qiang,et al. On demand dynamic linkage control system for air volume of multiple coal working faces[J]. Journal of Mine Automation,2022,48(6):112−117.

    [46] 王 磊,王 凯. 长距离掘进工作面局部通风智能联动调控研究[J]. 工矿自动化,2023,49(9):55−63.

    WANG Lei,WANG Kai. Research on intelligent linkage regulation and control of local ventilation in long distance heading face[J]. Journal of Mine Automation,2023,49(9):55−63.

    [47] 贾天毅,徐立军,陈志峰,等. 基于模糊理论的局部通风机变频控制系统设计[J]. 工矿自动化,2022,48(10):88−96,106.

    JIA Tianyi,XU Lijun,CHEN Zhifeng,et al. Design of variable frequency control system for local ventilator based on fuzzy theory[J]. Journal of Mine Automation,2022,48(10):88−96,106.

    [48] 刘尚明,马 砺,魏高明,等. 井下灾变风烟流快速密闭气囊特性[J]. 中国矿业大学学报,2021,50(4):735−743.

    LIU Shangming,MA Li,WEI Gaoming,et al. Study of the characteristics of ast airtight airbag in underground catastrophic wind smoke flow[J]. Journal of China University of Mining& Technology,2021,50(4):735−743.

    [49] 范喜生. 矿用自动复位式风井防爆门研究[J]. 煤炭科学技术,2012,40(6):58−61.

    FAN Xisheng. Research on mine automatic resetting type flame proof door of ventilation shaft[J]. Coal Science and Technology,2012,40(6):58−61.

    [50] 王雁鸣,牛开强,董玉革,等. 新型立井防爆门冲击力学响应与泄压复位行为[J]. 中国矿业大学学报,2021,50(4):755−763.

    WANG Yanming,NIU Kaiqing,DONG Yuge,et al. Impact mechanical response and pressure relief-reset behavior of innovative shaft explosion-proof door[J]. Journal of China University of Mining & Technology,2021,50(4):755−763.

    [51] 姜文忠,肖长亮. 煤矿井下灾区快速密闭技术及装备研究[J]. 煤炭科学技术,2019,47(11):231–238.

    JIANG Wenzhong,XIAO Changliang. Rapid airtight technology and equipment in underground coal mine disater area[J]. Coal Science and Technology,2019,47(11):231–238.

图(19)  /  表(1)
计量
  • 文章访问数:  416
  • HTML全文浏览量:  88
  • PDF下载量:  156
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-19
  • 网络出版日期:  2024-01-25
  • 刊出日期:  2024-01-24

目录

    /

    返回文章
    返回