高级检索

惰性粉体抑制瓦斯/煤尘复合爆炸特性及机理研究

纪文涛, 张国涛, 杨帅帅, 徐子晖, 毛文哲, 王燕

纪文涛,张国涛,杨帅帅,等. 惰性粉体抑制瓦斯/煤尘复合爆炸特性及机理研究[J]. 煤炭科学技术,2024,52(11):337−345. DOI: 10.12438/cst.2023-1411
引用本文: 纪文涛,张国涛,杨帅帅,等. 惰性粉体抑制瓦斯/煤尘复合爆炸特性及机理研究[J]. 煤炭科学技术,2024,52(11):337−345. DOI: 10.12438/cst.2023-1411
JI Wentao,ZHANG Guotao,YANG Shuaishuai,et al. Study on the characteristics and mechanism of inert powder inhibition of gas/coal dust compound explosion[J]. Coal Science and Technology,2024,52(11):337−345. DOI: 10.12438/cst.2023-1411
Citation: JI Wentao,ZHANG Guotao,YANG Shuaishuai,et al. Study on the characteristics and mechanism of inert powder inhibition of gas/coal dust compound explosion[J]. Coal Science and Technology,2024,52(11):337−345. DOI: 10.12438/cst.2023-1411

惰性粉体抑制瓦斯/煤尘复合爆炸特性及机理研究

基金项目: 国家自然科学基金面上资助项目(52374197,51904094);国家自然科学基金联合基金重点支持资助项目(U22A20120)
详细信息
    作者简介:

    纪文涛: (1989-),男,河南周口人,副教授,博士。E-mail:jiwentao@hpu.edu.cn

    通讯作者:

    王燕: (1982-) ,女,河南周口人,教授,博士。E-mail:yanwang@hpu.edu.cn

  • 中图分类号: TD712

Study on the characteristics and mechanism of inert powder inhibition of gas/coal dust compound explosion

  • 摘要:

    瓦斯/煤尘复合爆炸是一个耦合了均相燃烧与异相燃烧的复杂过程,燃烧主控机制动态变化,爆炸机理更加复杂,导致其相比单相瓦斯或煤尘爆炸具有更高的爆炸敏感性和爆炸强度,严重制约着煤矿的安全生产。为了防治瓦斯/煤尘复合爆炸灾害,选取碳酸氢钠和碳酸钙两种惰性粉体,在20 L球型爆炸装置中开展了惰性粉体抑制瓦斯/煤尘复合爆炸实验。通过系统的改变瓦斯和煤尘浓度配比,对不同浓度惰性粉体作用下瓦斯/煤尘复合体系最大爆炸压力和最大爆炸压力上升速率变化规律进行分析,并对比分析不同惰性粉体抑制瓦斯/煤尘复合爆炸性能之间的区别和联系。研究结果表明,碳酸氢钠和碳酸钙对不同浓度配比的瓦斯/煤尘复合体系爆炸均具有抑制作用,其中碳酸氢钠不仅可以通过分解吸热、延缓煤尘热解、降低煤尘分解速率等物理抑制方式来抑制瓦斯/煤尘复合爆炸,还可以通过消耗爆炸反应的关键自由基的化学抑制方式来抑制瓦斯/煤尘复合爆炸,而碳酸钙只能以物理吸热的方式抑制爆炸,因此碳酸氢钠对瓦斯/煤尘复合体系爆炸的抑制效果优于碳酸钙,具体表现为碳酸氢钠可完全抑制所有工况,碳酸钙仅能完全抑制瓦斯浓度低于8%时的瓦斯/煤尘复合工况。另外,2种惰性粉体对瓦斯/煤尘复合体系爆炸压力的抑制效率随着体系中瓦斯浓度的提升先升高后降低,当瓦斯浓度为6%、煤尘浓度为100 g/m3时抑爆效率最高;对瓦斯/煤尘复合体系爆炸压升速率的抑制效率随着体系中瓦斯浓度的提升逐渐升高,对浓度为10%的纯瓦斯爆炸时抑爆效率最高。

    Abstract:

    Gas/coal dust composite explosion is a complex process that combines homogeneous and heterogeneous combustion. The combustion main control mechanism changes dynamically and the explosion mechanism is more complex, resulting in higher explosion sensitivity and explosion intensity compared to single-phase gas or coal dust explosion, which seriously restricts the safe production of coal mines. In order to prevent and control the gas/coal dust composite explosion disaster, two inert powders, sodium bicarbonate and calcium carbonate, are selected to conduct experiments on inert powder suppression of gas/coal dust composite explosions in a 20 L spherical explosion device. Based on the different concentration ratios of gas and coal dust, the inhibition effect of two inert powders on the maximum explosion pressure and the maximum explosion pressure rise rate of the gas/coal dust composite system are analyzed and compared, as well as the differences and connections between the inhibition effect of the two inert powders. And the inhibition efficiency and mechanism of the two inert powders on gas/coal dust composite explosions are reflected comprehensively. The research results indicate that sodium bicarbonate and calcium carbonate have an inhibitory effect on the explosion of gas/coal dust composite systems with different concentration ratios. Sodium bicarbonate can not only suppress the explosion of gas/coal dust composite by physical suppression methods such as decomposing heat absorption, delaying coal dust pyrolysis, and reducing coal dust decomposition rate, but also by chemical suppression methods that consume key free radicals in the explosion reaction, however, calcium carbonate can only suppress explosions through physical heat absorption, so the inhibitory effect of sodium bicarbonate on the explosion of gas/coal dust composite system is better than that of calcium carbonate. Specifically, sodium bicarbonate can completely suppress all working conditions, while calcium carbonate can only completely suppress the gas/coal dust composite working conditions when the gas concentration is below 8%. In addition, the suppression efficiency of two inert powders on the explosion pressure of the gas/coal dust composite system first increases and then decreases with the increase of gas concentration in the system. The suppression efficiency is highest when the gas concentration is 6% and the coal dust concentration is 100 g/m3; The suppression efficiency of the explosion pressure rise rate of the gas/coal dust composite system gradually increases with the increase of gas concentration in the system, and the suppression efficiency is highest for pure gas explosions with a concentration of 10%.

  • 图  1   实验装置结构

    Figure  1.   Schematic diagram of the structure of the experimental device

    图  2   煤与惰性粉体粒径分布

    Figure  2.   Particle size distribution diagram of coal and inert powder

    图  3   不同瓦斯浓度下煤尘爆炸强度变化

    Figure  3.   Changes in the explosion intensity of coal dust at different gas concentrations

    图  4   瓦斯/煤尘复合体系最大爆炸压力和最大爆炸压力上升速率变化规律

    Figure  4.   Variation pattern of maximum explosion pressure and maximum explosion pressure rise rate in gas/coal dust composite system

    图  5   复合体系爆炸压力随惰性粉体浓度变化

    Figure  5.   Diagram of the change of the explosion pressure of the composite system with the concentration of inert powder

    图  6   煤与惰性粉体热重曲线

    Figure  6.   Thermogravimetric curve of coal and inert powder

    图  7   不同浓度惰性粉体诱导不同工况瓦斯/煤尘复合体系爆炸压力降幅

    Figure  7.   Explosion pressure reduction diagram of gas/coal dust composite system under different working conditions induced by different concentrations of inert powder

    图  8   复合体系爆炸压升速率随惰性粉体浓度变化

    Figure  8.   Variation of explosion pressure rise rate of composite system with inert powder concentration

    图  9   煤与惰性粉体热流量曲线

    Figure  9.   Heat flow rate curve of coal and inert powder

    图  10   不同浓度惰性粉体诱导不同工况瓦斯/煤尘复合体系爆炸压升速率降幅

    Figure  10.   Reduction in explosion pressure rise rate of gas/coal dust composite system under different conditions induced by different concentrations of inert powder

    表  1   煤尘组分分析

    Table  1   Analysis of coal dust components

    煤样水分/%灰分/%挥发分/%固定碳/%
    大同烟煤5.622.523.448.5
    下载: 导出CSV

    表  2   瓦斯/煤尘复合最大爆炸压力和最大爆炸压力上升速率

    Table  2   Maximum explosion pressure and maximum explosion pressure rise rate of gas/coal dust composite

    介质 命名 瓦斯/% 煤尘/
    (g·m−3)
    爆炸压
    力/MPa
    爆炸压升速
    率/(MPa·s−1)
    煤尘 A 0 400 0.65 28.88
    复合 B 2 300 0.66 44.40
    C 4 200 0.67 45.71
    D 6 100 0.69 58.79
    E 8 100 0.70 91.22
    甲烷 F 10 0 0.73 99.00
    下载: 导出CSV
  • [1] 谢和平,吴立新,郑德志. 2025年中国能源消费及煤炭需求预测[J]. 煤炭学报,2019,44(7):1949−1960.

    XIE Heping,WU Lixin,ZHENG Dezhi. Prediction on the energy consumption and coal demand of China in 2025[J]. Journal of China Coal Society,2019,44(7):1949−1960.

    [2] 张培森,张晓乐,董宇航,等. 2008—2021年我国煤矿事故规律分析及预测研究[J]. 矿业安全与环保,2023,50(2):136−140,146.

    ZHANG Peisen,ZHANG Xiaole,DONG Yuhang,et al. Law analysis and prediction research of coal mine accidents in China from 2008 to 2021[J]. Mining Safety & Environmental Protection,2023,50(2):136−140,146.

    [3]

    ZHAO Q,LIU J,HUANG C Y,et al. Characteristics of coal dust deflagration under the atmosphere of methane and their inhibition by coal ash[J]. Fuel,2021,291:120121. doi: 10.1016/j.fuel.2020.120121

    [4]

    WEN X P,WANG M M,SU T F,et al. Suppression effects of ultrafine water mist on hydrogen/methane mixture explosion in an obstructed chamber[J]. International Journal of Hydrogen Energy,2019,44(60):32332−32342. doi: 10.1016/j.ijhydene.2019.10.110

    [5]

    WANG Y,MENG X Q,JI W T,et al. The inhibition effect of gas–solid two-phase inhibitors on methane explosion[J]. Energies,2019,12(3):398. doi: 10.3390/en12030398

    [6] 余明高,阳旭峰,郑凯,等. 我国煤矿瓦斯爆炸抑爆减灾技术的研究进展及发展趋势[J]. 煤炭学报,2020,45(1):168−188.

    YU Minggao,YANG Xufeng,ZHENG Kai,et al. Progress and development of coal mine gas explosion suppression and disaster reduction technology in China[J]. Journal of China Coal Society,2020,45(1):168−188.

    [7]

    SONG Y F,NASSIM B,ZHANG Q. Explosion energy of methane/deposited coal dust and inert effects of rock dust[J]. Fuel,2018,228:112−122. doi: 10.1016/j.fuel.2018.04.155

    [8]

    DA H M,YIN H P,LIANG G Q. Explosion inhibition of coal dust clouds under coal gasification atmosphere by talc powder[J]. Process Safety and Environmental Protection,2022,165:286−294. doi: 10.1016/j.psep.2022.07.021

    [9]

    DAI H M,LIANG G Q,YIN H P,et al. Experimental investigation on the inhibition of coal dust explosion by the composite inhibitor of carbamide and zeolite[J]. Fuel,2022,308:121981. doi: 10.1016/j.fuel.2021.121981

    [10]

    DONG Z Q,LIU L J,CHU Y Y,et al. Explosion suppression range and the minimum amount for complete suppression on methane-air explosion by heptafluoropropane[J]. Fuel,2022,328:125331. doi: 10.1016/j.fuel.2022.125331

    [11]

    CAO X Y,LU Y W,JIANG J C,et al. Experimental study on explosion inhibition by heptafluoropropane and its synergy with inert gas[J]. Journal of Loss Prevention in the Process Industries,2021,71:104440. doi: 10.1016/j.jlp.2021.104440

    [12]

    DU B,HUANG W X,KUAI N S,et al. Experimental investigation on inerting mechanism of dust explosion[J]. Procedia Engineering,2012,43:338−342. doi: 10.1016/j.proeng.2012.08.058

    [13] 刘天奇. 不同煤质煤尘云最低着火温度变化规律研究[J]. 工矿自动化,2019,45(9):80−85.

    LIU Tianqi. Research on the minimum ignition temperature variation law of coal dust cloud with different coal quality[J]. Industry and Mine Automation,2019,45(9):80−85.

    [14]

    ZHAO Q,CHEN X F,YANG M J,et al. Suppression characteristics and mechanisms of ABC powder on methane/coal dust compound deflagration[J]. Fuel,2021,298:120831. doi: 10.1016/j.fuel.2021.120831

    [15]

    YU C F,JIANG B Y,YUAN L,et al. Inhibiting effect investigation of ammonium dihydrogen phosphate on oxidative pyrolysis characteristics of bituminous coal[J]. Fuel,2023,333:126352. doi: 10.1016/j.fuel.2022.126352

    [16]

    WEI X R,ZHANG Y S,WU G G,et al. Study on explosion suppression of coal dust with different particle size by shell powder and NaHCO3[J]. Fuel,2021,306:121709. doi: 10.1016/j.fuel.2021.121709

    [17]

    ZHENG L G,WANG Y L,YU S J,et al. The premixed methane/air explosion inhibited by sodium bicarbonate with different particle size distributions[J]. Powder Technology,2019,354:630−640. doi: 10.1016/j.powtec.2019.06.034

    [18] 罗振敏,张江,任军莹,等. NH4H2PO4粉体热分解产物在瓦斯爆炸中的作用[J]. 煤炭学报,2017,42(6):1489−1495.

    LUO Zhenmin,ZHANG Jiang,REN Junying,et al. Role of thermal decomposition products of NH4H2PO4 powder in gas explosion[J]. Journal of China Coal Society,2017,42(6):1489−1495.

    [19] 司荣军,王磊,贾泉升. 瓦斯煤尘爆炸抑隔爆技术研究进展[J]. 煤矿安全,2020,51(10):98−107.

    SI Rongjun,WANG Lei,JIA Quansheng. Research progress of explosion suppression and isolation technology of gas and coal dust[J]. Safety in Coal Mines,2020,51(10):98−107.

    [20]

    LI Q Z,WANG K,ZHENG Y N,et al. Experimental research of particle size and size dispersity on the explosibility characteristics of coal dust[J]. Powder Technology,2016,292:290−297. doi: 10.1016/j.powtec.2016.01.035

    [21]

    CAO W G,QIN Q F,CAO W,et al. Experimental and numerical studies on the explosion severities of coal dust/air mixtures in a 20-L spherical vessel[J]. Powder Technology,2017,310:17−23. doi: 10.1016/j.powtec.2017.01.019

    [22]

    WANG S Y,SHI Z C,PENG X,et al. Effect of the ignition delay time on explosion severity parameters of coal dust/air mixtures[J]. Powder Technology,2019,342:509−516. doi: 10.1016/j.powtec.2018.10.020

    [23]

    NIU Y H,ZHANG L L,SHI B M. Experimental study on the explosion-propagation law of coal dust with different moisture contents induced by methane explosion[J]. Powder Technology,2020,361:507−511. doi: 10.1016/j.powtec.2019.11.089

    [24]

    SU B,LUO Z M,WANG T,et al. Experimental and principal component analysis studies on minimum oxygen concentration of methane explosion[J]. International Journal of Hydrogen Energy,2020,45(21):12225−12235. doi: 10.1016/j.ijhydene.2020.02.133

    [25]

    WANG H Y,ZHANG Y W,XU J D,et al. Experimental study on effect of dilute coal dust on gas explosion pressure/flame evolution process[J]. Powder Technology,2022,404:117450. doi: 10.1016/j.powtec.2022.117450

    [26]

    SONG S X,CHENG Y F,MENG X R,et al. Hybrid CH4/coal dust explosions in a 20-L spherical vessel[J]. Process Safety and Environmental Protection,2019,122:281−287. doi: 10.1016/j.psep.2018.12.023

    [27]

    ZHAO T L,CHEN X K,CHENG F M,et al. Study on the synergistic inhibition mechanism of multicomponent powders on methane explosions[J]. Powder Technology,2023,418:118326. doi: 10.1016/j.powtec.2023.118326

    [28] 谭迎新,曹卫国,张云,等. 固态惰性介质对煤粉尘爆炸的抑制作用[J]. 测试科学与仪器,2018,9(4):335−338.

    TAN Yingxin,CAO Weiguo,ZHANG Yun,et al. Suppression effect of solid inertants on coal dust explosion[J]. Journal of Measurement Science and Instrumentation,2018,9(4):335−338.

    [29]

    Determination of explosion characteristics of dust clouds. Part 1:Determination of the maximum explosion pressure p<(Index)max> of dust clouds; German version EN 14034-1:2004+A1:2011:DIN EN 14034−1−2011[S]. UK:Standards Policy and Strategy Committee,2011.

    [30]

    Determination of explosion characteristics of dust clouds - Part 2:Determination of the maximum rate of explosion pressure rise (dp/dt)max of dust clouds (includes Amendment A1:2011):DIN EN 14034−2[S]. DIN,2011.

    [31]

    GARCIA-AGREDA A,DI BENEDETTO A,RUSSO P,et al. Dust/gas mixtures explosion regimes[J]. Powder Technology,2011,205(1-3):81−86. doi: 10.1016/j.powtec.2010.08.069

    [32]

    Determination of explosion characteristics of dust clouds - Part 3:Determination of the lower explosion limit LEL of dust clouds; German version EN 14034-3:2006:DIN EN 14034-3-2011[S]. UK:Standards Policy and Strategy Committee,2011.

    [33]

    WANG Y,CHENG Y S,YU M G,et al. Methane explosion suppression characteristics based on the NaHCO3/red-mud composite powders with core-shell structure[J]. Journal of Hazardous Materials,2017,335:84−91. doi: 10.1016/j.jhazmat.2017.04.031

图(10)  /  表(2)
计量
  • 文章访问数:  48
  • HTML全文浏览量:  2
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-06
  • 网络出版日期:  2024-11-06
  • 刊出日期:  2024-11-24

目录

    /

    返回文章
    返回