Research on hydration mechanism of nano-alumina modified cementing cement
-
摘要:
随着地面井固井技术发展加快,工程现场对于地面井固井水泥浆的早期流动性及凝结性能有了更高的要求。为了提高固井工程注水泥作业的顶替效率,改善固井工程现场作业应用情况,提出了纳米氧化铝颗粒改性固井水泥的方法,利用核磁共振技术对质量分数为0、0.05%、0.10%、0.15%及0.20%的纳米氧化铝改性水泥浆(水灰比为0.44)在不同水化龄期的水化反应变化特征进行了研究,探究了纳米氧化铝改性水泥的水相分布、物理结合水总信号量变化、峰形指数及迁移速率。结果表明:纳米氧化铝改性水泥浆在水化阶段的T2图谱会出现3个弛豫峰,分别对应絮凝结构填充水(0.1~10 ms)、毛细水(10 ms)、自由水(800~
1000 ms);其物理结合水总信号随纳米氧化铝质量分数增加而逐步减少,其中质量分数为0.20%的纳米氧化铝改性水泥浆信号量减少速率最快;峰形指数呈现先上升后下降的趋势,当水化反应进行至600 min时,质量分数为0.20%的改性水泥浆变化速率最快,弛豫峰向短弛豫方向移动速率加快;结合迁移速率将纳米氧化铝改性固井水泥水化反应阶段划分,其水化机制分别作用在4个水化时期:①初始水化期(5~60 min),水化速率未发生明显改变;②加速水化期(60~600 min),纳米氧化铝使水泥浆中物理结合水转化为化学结合水所经历时间变短,水化进程加快,达到促进水泥水化的效果;③稳定水化期(600~1200 min),水泥体系趋于稳定;④延缓水化期(1200 ~1800 min),物理结合水转化为化学结合水速率变慢,水泥水化进程减慢。研究结论得到,纳米氧化铝改性水泥浆水化时期可以划分为4个阶段,分别起到物理填充、加速、稳定、延缓的作用。在加速期,纳米氧化铝促进水泥的早期流动,有利于水泥浆的泵送及流动,在延缓期,纳米氧化铝延缓水泥的进一步水化进程,利于发展早期强度。其中,质量分数为0.20%的纳米氧化铝改性水泥浆对于水泥水化进程影响最大,促进填充水向结合水的转化,在加速水化期间对于水泥浆水化反应加速程度最大,以此作为依据对现场固井水泥的制备及应用提供指导。Abstract:With the accelerated development of surface well cementing technology, the engineering site has higher requirements for the early fluidity and coagulation performance of surface well cementing water slurry. In order to improve the top-off efficiency of cement injection operation in cementing engineering and improve the application of cementing engineering field operation, the method of nanoalumina particles modified cementing cement was proposed, and the NMR technique was used to study the change characteristics of the hydration reaction of nanoalumina-modified cement slurries (with the water-cement ratio of 0.44) with the mass fractions of 0.00% wt, 0.05% wt, 0.10% wt, 0.15% wt, and 0.20% wt at different hydration ages were investigated to characterize the changes in hydration reactions, and to probe the aqueous phase distribution, changes in the total signal amount of physically bound water, peak shape index, and migration rate of the nanoalumina-modified cements. The results showed that theT2 patterns of nano-alumina-modified cement pastes at the hydration stage would show three relaxation peaks, corresponding to the flocculated structure-filled water (0.1−10 ms), capillary water (10 ms), and free water (800−
1000 ms), respectively; and the total signal of the physically bound water decreased gradually with the increase of the mass fraction of nanoalumina, in which the nanoalumina-modified cement pastes with the mass fraction of 0.20%wt. Alumina-modified cement paste has the fastest reduction rate of signal; the peak shape index shows the trend of increasing and then decreasing, when the hydration reaction is carried out to 600 min, the modified cement paste with mass fraction of 0.20%wt has the fastest rate of change, and the rate of the relaxation peak moving to the short relaxation direction is accelerated; the combination of the migration rate of the nanoalumina-modified cementing cement hydration reaction stage division, and the hydration mechanism of its hydration mechanism respectively acted in the four Hydration period: ① initial hydration period (5−60 min), the hydration rate did not change significantly; ② accelerated hydration period (60−600 min), nano-alumina to make the physical binding water in the cement paste into chemical binding water in a shorter period of time, the hydration process is accelerated to achieve the effect of promoting the hydration of the cement; ③ stabilized hydration period (600−1200 min), the cement system tends to stabilize; ④ Delayed hydration period (1200 −1800 min), the rate of conversion of physically bonded water to chemically bonded water slows down, and the hydration process of cement slows down. It was concluded that the hydration period of nanoalumina-modified cement paste can be divided into four stages, and nanoalumina plays the roles of physical filling, accelerating, stabilizing, and retarding for the cement paste, respectively. In the accelerating period, nanoalumina promotes the early flow of cement, which is conducive to the pumping and flow of cement paste, and in the retarding period, nanoalumina retards the further hydration process of cement, which is conducive to the development of early strength. Among them, the nano-alumina modified cement paste with a mass fraction of 0.20% wt has the greatest influence on the cement hydration process, promotes the conversion of filler water to bound water, and accelerates the hydration reaction of cement paste to the greatest extent during the accelerated hydration period, which serves as the basis for providing guidance for the preparation and application of cementing cements in the field. -
-
表 1 G级高抗硫(HSRG)超细固井水泥的化学组成
Table 1 Chemical composition of G grade high sulfur resistance (HSRG) superfine cementing cement
组成 SiO2 Al2O3 Fe2O3 CaO MgO K2O SO3 MnO2 其他 质量分数/% 22.70 3.39 4.81 65.50 0.90 0.370 1.210 0.09 0.250 -
[1] 苗贺朝,王海,王晓东,等. 粉煤灰基防渗注浆材料配比优选及其性能试验研究[J]. 煤炭科学技术,2022,50(9):230−239. MIAO Hechao,WANG Hai,WANG Xiaodong,et al. Study on ratio optimization and performance test of fly ash-based impermeable grouting materials[J]. Coal Science and Technology,2022,50(9):230−239.
[2] 沈文峰,王亮,徐颖,等. 冲击荷载下聚丙烯纤维水泥砂浆力学特性研究[J]. 煤炭科学技术,2022,50(8):68−74. SHEN Wenfeng,WANG Liang,XU Ying,et al. Study on mechanical properties of polypropylene fiber cement mortar under impact load[J]. Coal Science and Technology,2022,50(8):68−74.
[3] 张文泉,朱先祥,李松,等. 橡胶−粉煤灰基矿井底板裂隙注浆材料性能的试验研究[J]. 煤炭科学技术,2023,51(5):1−10. doi: 10.13199/j.cnki.cst.2022-1153 ZHANG Wenquan,ZHU Xianxiang,LI Song,et al. Experimental study on performance of rubber-fly ash-based mine floor fissure grouting material[J]. Coal Science and Technology,2023,51(5):1−10. doi: 10.13199/j.cnki.cst.2022-1153
[4] 管学茂,李雪峰,张海波,等. 深井软岩无机有机复合注浆加固材料研发与应用[J]. 煤炭科学技术,2023,51(8):1−11. doi: 10.13199/j.cnki.cst.2023-0216 GUAN Xuemao,LI Xuefeng,ZHANG Haibo,et al. Research and application of inorganic and organic composite grouting reinforcement materials in deep weak rock[J]. Coal Science and Technology,2023,51(8):1−11. doi: 10.13199/j.cnki.cst.2023-0216
[5] 侯凯,王帅,姚顺,等. 矿用聚氨类注浆材料改性研究进展[J]. 煤科学技术,2022,50(10):28−34. HOU Kai,WANG Shuai,YAO Shun,et al. Research progress on modification of polyurethane grouting materials inmines[J]. Coal Science and Technology,2022,50(10):28−34.
[6] 周学进,郑克仁,周瑾. 不同有效碱含量下纳米氧化铝对水泥石固、液相组成的影响[J]. 硅酸盐学报,2018,46(2):193−205. ZHOU Xuejin,ZHENG Keren,ZHOU Jin. Influence of alumina nano-particles on pore solution and solid phase of cement paste at different equivalent alkali contents[J]. Journal of the Chinese Ceramic Society,2018,46(2):193−205.
[7] 宋建建,许明标,王晓亮,等. 纳米材料在油井水泥中的应用进展[J]. 科学技术与工程,2018,18(19):141−148. doi: 10.3969/j.issn.1671-1815.2018.19.022 SONG Jianjian,XU Mingbiao,WANG Xiaoliang,et al. Progress in application of nanomaterials in oil well cement[J]. Science Technology and Engineering,2018,18(19):141−148. doi: 10.3969/j.issn.1671-1815.2018.19.022
[8] NOVOTNÝ R,BARTONÍČKOVÁ E,ŠVEC J,et al. Influence of active alumina on the hydration process of Portland cement[J]. Procedia Engineering,2016,151:80−86. doi: 10.1016/j.proeng.2016.07.383
[9] GOWDA R,NARENDRA H,NAGABUSHAN B M,et al. Investigation of nano-alumina on the effect of durability and micro-structural properties of the cement mortar[J]. Materials Today:Proceedings,2017,4(11):12191−12197.
[10] 李春景,孙振平,李奇,等. 低场核磁共振技术在水泥基材料中的应用[J]. 材料导报,2016,30(13):133−138. LI Chunjing,SUN Zhenping,LI Qi,et al. Application of low-field nuclear magnetic resonance in cement-based materials[J]. Materials Review,2016,30(13):133−138.
[11] 姚武,佘安明,杨培强. 水泥浆体中可蒸发水的~1H核磁共振弛豫特征及状态演变[J]. 硅酸盐学报,2009,37(10):1602−1606. doi: 10.3321/j.issn:0454-5648.2009.10.002 YAO Wu,SHE Anming,YANG Peiqiang. 1h-nmr relaxation and state evolvement of evaporable water in cement pastes[J]. Journal of the Chinese Ceramic Society,2009,37(10):1602−1606. doi: 10.3321/j.issn:0454-5648.2009.10.002
[12] 张京波,王琦,宋鹏,等. 纳米氧化铝对硅酸三钙水化性能的影响[J]. 济南大学学报(自然科学版),2018,32(6):510−515. ZHANG Jingbo,WANG Qi,SONG Peng,et al. Effects of nano-sized alumina on hydration properties of tricalcium silicate[J]. Journal of University of Jinan (Science and Technology),2018,32(6):510−515.
[13] 张爱,葛勇. 不同粒径纳米氧化硅改性白水泥水化过程的1H低场核磁弛豫特征[J]. 硅酸盐学报,2021,49(8):1662−1669. ZHANG Ai,GE Yong. 1H low-field NMR relaxation characteristics of hydration process of white cement modified with silica nanoparticles[J]. Journal of the Chinese Ceramic Society,2021,49(8):1662−1669.
[14] 谢晓杰,王申. 纳米氧化铝对硅酸盐水泥浆体流变、水化和硬化强度的影响[J]. 硅酸盐通报,2021,40(6):1911−1917. XIE Xiaojie,WANG Shen. Effect of nano-alumina on rheological property,hydration and hardening strength of Portland cement paste[J]. Bulletin of the Chinese Ceramic Society,2021,40(6):1911−1917.
[15] ZHOU J,ZHENG K R,LIU Z Q,et al. Chemical effect of nano-alumina on early-age hydration of Portland cement[J]. Cement and Concrete Research,2019,116:159−167. doi: 10.1016/j.cemconres.2018.11.007
[16] LI Z H,WANG H F,HE S,et al. Investigations on the preparation and mechanical properties of the nano-alumina reinforced cement composite[J]. Materials Letters,2006,60(3):356−359. doi: 10.1016/j.matlet.2005.08.061
[17] 姚武,何莉,梁慷. 应用纳米压痕技术表征水化硅酸钙凝胶[J]. 建筑材料学报,2010,13(3):277−280. doi: 10.3969/j.issn.1007-9629.2010.03.001 YAO Wu,HE Li,LIANG Kang. Characterization of calcium silicate hydrate gel using nanoindentation technique[J]. Journal of Building Materials,2010,13(3):277−280. doi: 10.3969/j.issn.1007-9629.2010.03.001
[18] 孙振平,穆帆远,康旺,等. 纤维素醚改性硫铝酸盐水泥浆体中可蒸发水的1H低场核磁弛豫特征[J]. 硅酸盐学报,2019,47(8):1109−1115. SUN Zhenping,MU Fanyuan,KANG Wang,et al. 1H low-field NMR relaxation characteristics of evaporable water in hydroxyethyl methyl cellulose ether modified calcium sulfoaluminate cement[J]. Journal of the Chinese Ceramic Society,2019,47(8):1109−1115.
[19] 李犇. 水化硅酸钙(C—S—H)凝胶的细观力学机理研究[D]. 哈尔滨:哈尔滨工程大学,2018. LI Ben. Study on micromechanical mechanism of hydrated calcium silicate (C—S—H) gel[D]. Harbin:Harbin Engineering University,2018.
[20] ZHAN B J,XUAN D X,POON C S. The effect of nanoalumina on early hydration and mechanical properties of cement pastes[J]. Construction and Building Materials,2019,202:169−176. doi: 10.1016/j.conbuildmat.2019.01.022