高级检索

基于Piper-层次聚类−灰色关联度的突水水源识别

潘军

潘 军. 基于Piper-层次聚类−灰色关联度的突水水源识别[J]. 煤炭科学技术,2024,52(S1):221−227. DOI: 10.12438/cst.2023-0918
引用本文: 潘 军. 基于Piper-层次聚类−灰色关联度的突水水源识别[J]. 煤炭科学技术,2024,52(S1):221−227. DOI: 10.12438/cst.2023-0918
PAN Jun. Study on mine water inrush source discrimination method based on Piper- hierarchical clustering - gray rational analysis[J]. Coal Science and Technology,2024,52(S1):221−227. DOI: 10.12438/cst.2023-0918
Citation: PAN Jun. Study on mine water inrush source discrimination method based on Piper- hierarchical clustering - gray rational analysis[J]. Coal Science and Technology,2024,52(S1):221−227. DOI: 10.12438/cst.2023-0918

基于Piper-层次聚类−灰色关联度的突水水源识别

基金项目: 

华能集团总部科技资助项目(HNKJ20-H49)

详细信息
    作者简介:

    潘军: (1978—),男,采矿工程师,硕士。E-mail:panj2454@163.com

  • 中图分类号: TD745

Study on mine water inrush source discrimination method based on Piper- hierarchical clustering - gray rational analysis

Funds: 

Huaneng Group Headquarters Technology Project (HNKJ20-H49)

  • 摘要:

    快速准确地识别煤矿突水的来源对于煤矿安全开采十分重要,是煤矿防治水的基础工作。基于Piper三线图−层次聚类−灰色关联度的综合方法对甘肃省某煤矿的突水水源进行了识别。工作面井下排水、断层裂隙水和顶板砂岩裂隙水的水化学类型均为SO4-K·Na型水,地表水水化学类型为SO4·HCO3-Ca型水。在Piper三线图中,井下排水与其他类型水在图中的距离较远,初步判断井下排水是来自多种水源的混合水。通过层次聚类分析得到煤层开采产生的井下排水与顶板砂岩裂隙水以及断层裂隙水的水质特征相对距离较近,特征类似。最后,采用灰色关联度判别模型进行判断,结果表明煤层顶板裂隙水以及断层裂隙水与井下排水的关联度较好。综合上述3种方法可知,工作面开采产生的井下排水主要来源于顶板砂岩水和断层裂隙水,与地表水的关系较小。推测可能是在开采过程中地层扰动导致的顶板水补给以及导水裂隙带导通孔隙水补给。因此,顶板含水层和导水裂隙带的研究与探查是该煤矿今后防治水工作的重点。

    Abstract:

    Identifying the water inrush source accurately is a fundamental work and crucial for safe mining in coal mines. This study focuses on a coal mine in Gansu Province based on a comprehensive method of Piper trilinear diagram, hierarchical clustering and gray rational analysis. The water chemical types of underground drainage, fault fissure water and roof sandstone fissure water in the working face are all SO4-K·Na type and the water chemical types of ground is SO4·HCO3-Ca type. In the Piper trilinear diagram, the underground drainage water sample is far from other water sample points, indicating the underground drainage water may be mixed from multiple sources. Hierarchical clustering analysis shows that the underground drainage water is relatively close to the water chemistry of roof sandstone fissure water and fault fissure water. Finally, the gray rational analysis indicates that underground drainage water is better correlative with roof fissure water and fault fissure water. According to the aforementioned comprehensive method, the underground drainage water is mainly derived from roof sandstone water and fault fissure water, yet has little relations with surface water. It is speculated that it may be the roof water supply caused by strata disturbance during the mining process, as well as the pore water supply through the water conducting fracture zone. Therefore, the research and exploration of the roof aquifer and water conducting fracture zone will be of great importance in the future work of water prevention and control in the coal mine.

  • 图  1   综合水文柱状简图

    Figure  1.   Comprehensive hydrological column diagram

    图  2   研究区水质Piper三线图

    Figure  2.   Piper trilinear diagram of water samples

    图  3   矿区各取样点水化学特征聚类分析

    Figure  3.   Hierarchical cluster analysis of water chemistry

    表  1   矿区水样主要成分含量

    Table  1   Major ion concentrations of water samples in study area

    编号 类型 取样年份 质量浓度/(mg·L−1 pH
    K++Na+ Ca2+ Mg2+ Cl SO4 2− HCO3 CO3 2− TDS
    1 井下排水 2015年 542.5 8 9.7 223.2 522.6 439.3 24 1565.6 8.47
    2 断层裂隙水 2018年 536.9 168.3 91.4 277.9 937.5 738.3 2381.2 7.21
    3 ZK203钻孔 2008年 733.5 292.6 150.7 383.6 1604.2 768.9 3549 7.25
    4 水1钻孔 2021年 1076.38 120.54 14.62 503.04 1660.39 323.1 3712 7.64
    5 水3钻孔 2021年 718.91 198.9 76.01 334.78 1417.96 521.72 3060 7.41
    6 区域性河流 2015年 21.8 54.1 9 10.6 78.8 122 241.7 7.8
    7 河流1 2015年 25.7 80.2 14.6 10.6 153.7 183.1 393.8 7.94
    8 河流2 2021年 12.97 94.35 19.54 12.27 176.99 165.12 410 7.87
    下载: 导出CSV

    表  2   矿区各取样点水化学特征欧式距离

    Table  2   Euclidian distances between water chemical compositions

    类型 样品 平方欧式距离
    1 2 3 4 5 6 7 8
    井下排水 1 0 0.025 0.046 0.053 0.046 0.174 0.170 0.189
    断层裂隙水 2 0.025 0 0.012 0.057 0.024 0.090 0.076 0.081
    ZK203钻孔 3 0.046 0.012 0 0.027 0.004 0.135 0.106 0.093
    水1钻孔 4 0.053 0.057 0.027 0 0.012 0.269 0.234 0.215
    水3钻孔 5 0.046 0.024 0.004 0.012 0 0.178 0.145 0.129
    区域性河流 6 0.174 0.090 0.135 0.269 0.178 0 0.007 0.025
    河流1 7 0.170 0.076 0.106 0.234 0.145 0.007 0 0.008
    河流2 8 0.189 0.081 0.093 0.215 0.129 0.025 0.008 0
    下载: 导出CSV

    表  3   参考序列及因素序列

    Table  3   Table of reference and factor series

    水质指标 序号 工作面排水x0(k) 断层裂隙水x1(k) 煤系顶板水x2(k) 区域性河水x3(k) 矿区河水x4(k)
    Cl 1 6.29 7.83 11.47 0.30 0.32
    SO42− 2 10.89 19.53 32.52 1.64 3.44
    HCO3+CO3 2− 3 7.60 12.10 8.82 2.00 2.85
    K++Na+ 4 23.59 23.34 36.65 0.95 0.84
    Ca2+ 5 0.40 8.42 10.20 2.71 4.36
    Mg2+ 6 0.81 7.62 6.70 0.75 1.42
    下载: 导出CSV

    表  4   关联度计算结果

    Table  4   Table of correlation results

    参数 取值
    均值化结果x0(k) = [0.761,1.317,0.688,2.855,0.048,0.097]
    x1(k) = [0.595,1.486,0.921,1.776,0.640,0.579]
    x2(k) = [0.646,1.834,0.497,2.067,0.575,0.378]
    x3(k) = [0.214,1.180,1.438,0.681,1.945,0.539]
    x4(k) = [0.145,1.560,1.292,0.380,1.976,0.644]
    绝对差计算1k) = [0.165,0.168,0.233,1.078,0.592,0.481]
    2k) = [0.114,0.516,0.190,0.787,0.527,0.280]
    3k) = [0.546,0.137,0.750,2.173,1.896,0.441]
    4k) = [0.615,0.242,0.604,2.474,1.927,0.546]
    max = max(1.079,0.788,2.174,2.475)=2.475
    min = min (0.165,0.114,0.137,0.242)=0.114
    关联系数序列u1k) = [0.963,0.961,0.919,0.583,0.738,0.786]
    u2k) = [1.000,0.770,0.946,0.667,0.765,0.890]
    u3k) = [0.757,0.983,0.679,0.396,0.431,0.804]
    u4k) = [0.729,0.913,0.733,0.364,0.426,0.757]
    关联度γ1=0.825,γ2=0.840,γ3=0.676,γ4=0.654
    下载: 导出CSV
  • [1] 武强,崔芳鹏,赵苏启,等. 矿井水害类型划分及主要特征分析[J]. 煤炭学报,2013,38(4):561−565.

    WU Qiang,CUI Fangpeng,ZHAO Suqi,et al. Type classification and main characteristics of mine water disasters[J]. Journal of China Coal Society,2013,38(4):561−565.

    [2] 孙亚军,徐智敏,李鑫,等. 我国煤矿区矿井水污染问题及防控技术体系构建[J]. 煤田地质与勘探,2021,49(5):1−16.

    SUN Yajun,XU Zhimin,LI Xin,et al. Mine water drainage pollution in China’s coal mining areas and the construction of prevention and control technical system[J]. Coal Geology & Exploration,2021,49(5):1−16.

    [3] 范立民,马万超,常波峰,等. 榆神府矿区地下水水化学特征及形成机理[J]. 煤炭科学技术,2023,51(1):384−395.

    FAN Limin,MA Wanchao,CHANG Bofeng,et al. Hydrochemical characteristics and formation mechanism of groundwater in Yushenfu Mining Area[J]. Coal Science and Technology,2023,51(1):384−395.

    [4] 董东林,张健,林刚,等. 矿井涌(突)水源混合水识别模型研究[J]. 煤炭工程,2020,52(12):124−127.

    DONG Donglin,ZHANG Jian,LIN Gang,Identification model of the source of water-inrush[J]. Coal Engineering,2020,52(12):124−127.

    [5] 赵伟,刘启蒙,柴辉婵,等. 基于Fisher判别法和质心距理论的突水水源识别[J]. 科学技术与工程,2020,20(9):3552−3556. doi: 10.3969/j.issn.1671-1815.2020.09.026

    ZHAO Wei,LIU Qimeng,CHAI Huichan,et al. Identification of water inrush source based on fisher discriminant method and centroid distance theroy[J]. Science Technology and Engineering,2020,20(9):3552−3556. doi: 10.3969/j.issn.1671-1815.2020.09.026

    [6] 朱赛君,姜春露,毕波,等. 基于组合权-改进灰色关联度理论的矿井突水水源识别[J]. 煤炭科学技术,2022,50(4):165−172.

    ZHU Saijun,JIANG Chunlu ,BI Bo ,et al. Identification of combination weight-theory of improved grey relational degree[J]. Coal Science and Technology,2022,50(4):165−172.

    [7] 孙文洁,杨恒,李祥,等. PCA与ELM模型相结合的矿井突水水源快速识别方法研究[J]. 煤炭工程,2020,52(1):111−115.

    SUN Wenjie,YANG Heng,LI Xiang,et al. Research on rapid recognition method of mine water inrush source based on PCA and ELM model[J]. Coal Engineering 2020,52(1):111−115.

    [8] 耿建军. 基于系统聚类分析的煤矿突水水源识别技术——以潞安矿区王庄煤矿为例[J]. 中国煤炭地质,2019,31(8):54−59. doi: 10.3969/j.issn.1674-1803.2019.08.12

    GENG Jianjun. Coalmine water bursting source identification technology based on hierarchical cluster analysis—a case study of Wangzhuang Coalmine,Lu’an Mining Area[J]. Coal Geology of China,2019,31(8):54−59. doi: 10.3969/j.issn.1674-1803.2019.08.12

    [9] 琚棋定,胡友彪,张淑莹. 基于主成分分析与贝叶斯判别法的矿井突水水源识别方法研究[J]. 煤炭工程,2018,50(12):90−94.

    JU Qiding,HU Youbiao,ZHANG Shuying,et al. Mine water inrush source identification method based on principalcomponent analysis and Bayesian discriminant[J]. Coal Engineering,2018,50(12):90−94.

    [10] 陈绍杰,刘久潭,汪锋,等. 基于PCA-RA的滨海矿井水源识别技术研究[J]. 煤炭科学技术 2021,49(2):217−225.

    CHEN Shaojie,LIU Jiutan,WANG Feng,et al. Technological research on water source identiftcation of coastal coalmines based on PCA-RA[J]. Coal Science and Technology,2021,49 (2) :217−225.

    [11] 刘旭东,张瑞,万宝. 基于Piper-PCA-MLP神经网络的矿井涌水水源识别方法研究[J]. 中国煤炭地质,2022,34(7):50−55. doi: 10.3969/j.issn.1674-1803.2022.07.10

    LIU Xudong,ZHANG Rui,WAN Bao,et al. Study on mine water inrush source discrimination method based on Piper-PCA-MLP neural network[J]. Coal Geology of China,2022,34(7):50−55. doi: 10.3969/j.issn.1674-1803.2022.07.10

    [12] 王雅茹,施龙青,邱梅. 基于Piper三线图的矿井水化学特征分析[J]. 山东煤炭科技,2019(4):145−147,150. doi: 10.3969/j.issn.1005-2801.2019.04.057

    WANG Yaru,SHI Longqing,QIU Mei. Analysis of chemical characteristics of mine water based on piper trilinear diagram[J]. Shandong Coal Science and Technology,2019(4):145−147,150. doi: 10.3969/j.issn.1005-2801.2019.04.057

    [13] 王甜甜,张雁,赵伟,等. 伊敏矿区地下水水化学特征及其形成作用分析[J]. 环境化学,2021,40(5):1480−1488.

    WANG Tiantian,ZHANG Yan,ZHAO Wei,et al. Hydrogeochemical characteristics and formation process of groundwater in Yimin miningarea[J]. Environmental Chemistry,2021,40 (5):1480−1489.

    [14] 苏俏俏,黄平华,丁风帆,等. 基于Piper-PCA-Fisher模型的矿井突水水源识别[J]. 能源与环保,2021,43(10):122−127.

    SU Qiaoqiao,HUANG Pinghua,DING Fengfan,et al. Identification of mine water inrush source based on Piper-PCA-Fisher model[J]. China Energy and Environmental Protection,2021,43(10):122−127.

    [15] 姚洁,童敏明,刘涛,等. 基于聚类分析方法的矿井水源识别[J]. 煤矿安全,2013,44(2):29−35.

    YAO Jie,TONG Minming,LIU Tao,et al. Mine water source identification based on cluster analysis method[J]. Safety in Coal Mines,2013,44(2):29−35.

    [16] 曲兴玥,邱梅,施龙青. 基于因子-聚类分析的矿井水源识别[J]. 煤炭技术,2018,37(12):137−139.

    QU Xingyue,QIU Mei,SHI Longqing. Recognition method of mine water sources based on factor analysis and cluster analysis[J]. Coal Technology,2018,37(12):137−139.

    [17] 蒋孝峰,杨中元. 基于熵权-灰色关联度理论的矿井突水水源判别模型研究[J]. 地下水,2020,42(5):26−29.

    JIANG Xiaofeng,YANG Zhongyuan. Research on discrimination model of water inrush source in mines based on entropy weight method of grey correlation theory[J]. Groundwater,2020,42(5):26−29.

    [18] 施龙青,史雅迪,邱梅,等. 基于Piper图、灰色关联度和三维高密度电法的断层水源判别[J]. 中国科技论文,2022,17(1):1−8.

    SHI Longqing ,SHI Yadi ,QIU Mei,et al. Identification of fault water source based on Piper diagram,grey correlation degree and 3D high density electric method[J]. China Science Paper,2022,17(1):1−8.

    [19] 刘江明,张伟龙,陈殿赋. 基于灰色关联度分析方法的矿井突水水源快速识别研究[J]. 地下水,2013,35(3):26−27.

    LIU Jiangming,ZHANG Weilong,CHEN Dianfu. Research on quick -judgment on source of mine's underground water based on gray correlation analysis[J]. Groundwater,2013,35(3):26−27.

    [20] 史秋艾. 新疆东沟煤矿充水水源识别及水文地球化学特征研究[J]. 中国煤炭地质,2022,34(11):41−45.

    SHI Qiuai. Research on hydrogeochemical characteristics and water filling source identification of Donggou Coalmine,Xinjiang[J]. Coal Geology of China,2022,34(11):41−45.

图(3)  /  表(4)
计量
  • 文章访问数:  40
  • HTML全文浏览量:  6
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-24
  • 网络出版日期:  2024-07-03
  • 刊出日期:  2024-05-31

目录

    /

    返回文章
    返回